Accelerated gradient methods with strong convergence to the minimum norm minimizer: a dynamic approach combining time scaling, averaging, and Tikhonov regularization - Archive ouverte HAL
Pré-Publication, Document De Travail (Preprint/Prepublication) Année : 2022

Accelerated gradient methods with strong convergence to the minimum norm minimizer: a dynamic approach combining time scaling, averaging, and Tikhonov regularization

Hedy Attouch
Zaki Chbani
  • Fonction : Auteur
  • PersonId : 1015233
Hassan Riahi
  • Fonction : Auteur
  • PersonId : 1015231

Résumé

In a Hilbert framework, for convex differentiable optimization, we consider accelerated gradient methods obtained by combining temporal scaling and averaging techniques with Tikhonov regularization. We start from the continuous steepest descent dynamic with an additional Tikhonov regularization term whose coefficient vanishes asymptotically. We provide an extensive Lyapunov analysis of this first-order evolution equation. Then we apply to this dynamic the method of time scaling and averaging recently introduced by Attouch, Bot and Nguyen. We thus obtain an inertial dynamic which involves viscous damping associated with Nesterov's method, implicit Hessian damping and Tikhonov regularization. Under an appropriate setting of the parameters, just using Jensen's inequality, without the need for another Lyapunov analysis, we show that the trajectories have at the same time several remarkable properties: they provide a rapid convergence of values, fast convergence of the gradients to zero, and strong convergence to the minimum norm minimizer. These results complete and improve the previous results obtained by the authors.
Fichier principal
Vignette du fichier
ACR-TSA-Tikh-Nov-18-22.pdf (831.35 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03859665 , version 1 (18-11-2022)

Identifiants

  • HAL Id : hal-03859665 , version 1

Citer

Hedy Attouch, Zaki Chbani, Hassan Riahi. Accelerated gradient methods with strong convergence to the minimum norm minimizer: a dynamic approach combining time scaling, averaging, and Tikhonov regularization. 2022. ⟨hal-03859665⟩
35 Consultations
49 Téléchargements

Partager

More