Tail asymptotics for extinction times of self-similar fragmentations
Résumé
We provide the exact large-time behavior of the tail distribution of the extinction time of a self-similar fragmentation process with a negative index of self-similarity, improving thus a previous result on the logarithmic asymptotic behavior of this tail. Two factors influence this behavior: the distribution of the largest fragment at the time of a dislocation and the index of self-similarity. As an application we obtain the asymptotic behavior of all moments of the largest fragment and compare it to the behavior of the moments of a tagged fragment, whose decrease is in general significantly slower. We illustrate our results on several examples, including fragmentations related to random real trees - for which we thus obtain the large-time behavior of the tail distribution of the height - such as the stable L\'evy trees of Duquesne, Le Gall and Le Jan (including the Brownian tree of Aldous), the alpha-model of Ford and the beta-splitting model of Aldous.