Saturating systems and the rank covering radius - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Saturating systems and the rank covering radius

Résumé

We introduce the concept of a rank saturating system and outline its correspondence to a rank-metric code with a given covering radius. We consider the problem of finding the value of $s_{q^m/q}(k,\rho)$, which is the minimum $\mathbb{F}_q$-dimension of a $q$-system in $\mathbb{F}_{q^m}^k$ which is rank $\rho$-saturating. This is equivalent to the covering problem in the rank metric. We obtain upper and lower bounds on $s_{q^m/q}(k,\rho)$ and evaluate it for certain values of $k$ and $\rho$. We give constructions of rank $\rho$-saturating systems suggested from geometry.
Fichier principal
Vignette du fichier
2206.14740.pdf (273.5 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03857719 , version 1 (17-11-2022)

Identifiants

Citer

Matteo Bonini, Martino Borello, Eimear Byrne. Saturating systems and the rank covering radius. 2022. ⟨hal-03857719⟩
50 Consultations
21 Téléchargements

Altmetric

Partager

More