Surface reactivity of anatase particles towards phosphated species - Archive ouverte HAL
Article Dans Une Revue Colloids and Surfaces A: Physicochemical and Engineering Aspects Année : 2022

Surface reactivity of anatase particles towards phosphated species

Résumé

This multi-scale and multi-technique work investigates the adsorption of phosphated species on the TiO2 anatase surface. Our original approach declines for the first time the progressive ethyl substitution of phosphates to identify the structure of complexes formed upon adsorption of these molecules on anatase in aqueous dispersions, under various pH conditions. To quantify the adsorbed amount of these molecules on TiO2, adsorption isotherms were recorded as a function of pH. In parallel, zeta potential measurements were performed to screen the evolution of the TiO2 surface charge in the presence of the phosphated compounds. Lastly, surface complexes structure was characterized using spectroscopic methods: solid-state 31P Nuclear Magnetic Resonance, Attenu-ated Total Reflectance Fourier Transform Infrared, and Diffuse Reflectance Infrared Fourier Transform Spec-troscopy in the near infrared spectral range. Upon decreasing pH, the amount of adsorbed species increases, reaching a maximum of 1.5 phosphorus atom per nm2 at pH 2. Monoethyl-phosphate remains adsorbed in similar amounts to orthophosphate, but di-and tri-ethyl substitutions lead to a sharp decrease of adsorption. Spectro-scopic analyses reveal the affinity of othophosphate and monoethyl-phosphate for the anatase surface, with formation of bridging or chelating bidentate complexes, more or less protonated according to pH values.
Fichier principal
Vignette du fichier
Corrected manuscript-1.pdf (1.16 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03857049 , version 1 (17-11-2022)

Identifiants

Citer

F. Guiot, C. Praud, S. Quillard, B. Humbert, M.-H. Ropers, et al.. Surface reactivity of anatase particles towards phosphated species. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 655, pp.130232. ⟨10.1016/j.colsurfa.2022.130232⟩. ⟨hal-03857049⟩
50 Consultations
77 Téléchargements

Altmetric

Partager

More