Numerical investigation of spallation neutrons generated from petawatt-scale laserdriven proton beams - Archive ouverte HAL
Article Dans Une Revue Matter and Radiation at Extremes Année : 2021

Numerical investigation of spallation neutrons generated from petawatt-scale laserdriven proton beams

A. Soloviev
  • Fonction : Auteur
K. Burdonov
A. Kotov
  • Fonction : Auteur
S. Perevalov
  • Fonction : Auteur
R. Zemskov
  • Fonction : Auteur
V.N. Ginzburg
  • Fonction : Auteur
A. Kochetkov
  • Fonction : Auteur
A. Kuzmin
  • Fonction : Auteur
A. Shaikin
  • Fonction : Auteur
I. Shaikin
  • Fonction : Auteur
E. Khazanov
  • Fonction : Auteur
I. Yakovlev
  • Fonction : Auteur
A. Luchinin
  • Fonction : Auteur
M.V. Morozkin
  • Fonction : Auteur
M. Proyavin
  • Fonction : Auteur
M.Yu. Glyavin
  • Fonction : Auteur
J. Fuchs
M.V. Starodubtsev
  • Fonction : Auteur

Résumé

Laser-driven neutron sources could offer a promising alternative to those based on conventional accelerator technologies in delivering compact beams of high brightness and short duration. We examine this through particle-in-cell and Monte Carlo simulations, that model, respectively, the laser acceleration of protons from thin-foil targets and their subsequent conversion into neutrons in secondary lead targets. Laser parameters relevant to the 0.5 petawatt (PW) LMJ-PETAL and 0.6-6 PW Apollon systems are considered. Due to its high intensity, the 20-fs-duration 0.6 PW Apollon laser is expected to accelerate protons up to above 100 MeV, thereby unlocking efficient neutron generation via spallation reactions. As a result, despite a 30-fold lower pulse energy than the LMJ-PETAL laser, the 0.6 PW Apollon laser should perform comparably well both in terms of neutron yield and flux. Notably, we predict that very compact neutron sources, of ~ 10 ps duration and ~ 100 µm spot size, can be released provided the lead convertor target is thin enough (~ 100 µm). These sources are characterized by extreme fluxes, of the order of 10 23 n cm-2 s-1 , and even ten times higher when using the 6 PW Apollon laser. Such values surpass those currently achievable at large-scale accelerator-based neutron sources (~ 10 16 n cm-2 s-1), or reported from previous laser experiments using low-Z converters (~ 10 18 n cm-2 s-1). By showing that such laser systems can produce neutron pulses significantly brighter than existing sources, our findings open a path towards attractive novel applications, such as flash neutron radiography or laboratory studies of heavy-ion nucleosynthesis.
Fichier non déposé

Dates et versions

hal-03855487 , version 1 (16-11-2022)

Identifiants

Citer

A. Soloviev, K. Burdonov, A. Kotov, S. Perevalov, R. Zemskov, et al.. Numerical investigation of spallation neutrons generated from petawatt-scale laserdriven proton beams. Matter and Radiation at Extremes, 2021, 63 (11), pp.876-886. ⟨10.1007/s11141-021-10101-y⟩. ⟨hal-03855487⟩
52 Consultations
0 Téléchargements

Altmetric

Partager

More