Particle approximation of the doubly parabolic Keller-Segel equation in the plane - Archive ouverte HAL
Article Dans Une Revue Journal of Functional Analysis Année : 2023

Particle approximation of the doubly parabolic Keller-Segel equation in the plane

Résumé

In this work, we study a stochastic system of N particles associated with the parabolicparabolic Keller-Segel system. This particle system is singular and non Markovian in that its drift term depends on the past of the particles. When the sensitivity parameter is sufficiently small, we show that this particle system indeed exists for any N ≥ 2, we show tightness in N of its empirical measure, and that any weak limit point of this empirical measure, as N → ∞, solves some nonlinear martingale problem, which in particular implies that its family of time-marginals solves the parabolic-parabolic Keller-Segel system in some weak sense. The main argument of the proof consists of a Markovianization of the interaction kernel: We show that, in some loose sense, the two-by-two path-dependant interaction can be controlled by a two-by-two Coulomb interaction, as in the parabolic-elliptic case.
Fichier principal
Vignette du fichier
ArxivV2.pdf (407.13 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03855110 , version 1 (30-08-2023)

Licence

Identifiants

Citer

Nicolas Fournier, Milica Tomašević. Particle approximation of the doubly parabolic Keller-Segel equation in the plane. Journal of Functional Analysis, 2023, 285 (7), pp.110064. ⟨10.1016/j.jfa.2023.110064⟩. ⟨hal-03855110⟩
74 Consultations
64 Téléchargements

Altmetric

Partager

More