A robust model-based clustering based on the geometric median and the Median Covariation Matrix
Résumé
Grouping observations into homogeneous groups is a recurrent task in statistical data analysis. We consider Gaussian Mixture Models, which are the most famous parametric model-based clustering method. We propose a new robust approach for model-based clustering, which consists in a modification of the EM algorithm (more specifically, the M-step) by replacing the estimates of the mean and the variance by robust versions based on the median and the median covariation matrix. All the proposed methods are available in the R package RGMM accessible on CRAN.
Origine | Fichiers produits par l'(les) auteur(s) |
---|