A geometric characterization of minimal codes and their asymptotic performance - Archive ouverte HAL
Article Dans Une Revue Advances in Mathematics of Communications Année : 2019

A geometric characterization of minimal codes and their asymptotic performance

Résumé

In this paper, we give a geometric characterization of minimal linear codes. In particular, we relate minimal linear codes to cutting blocking sets, introduced in a recent paper by Bonini and Borello. Using this characterization, we derive some bounds on the length and the distance of minimal codes, according to their dimension and the underlying field size. Furthermore, we show that the family of minimal codes is asymptotically good. Finally, we provide some geometrical constructions of minimal codes as cutting blocking sets.
Fichier principal
Vignette du fichier
1911.11738.pdf (272.39 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03852306 , version 1 (14-11-2022)

Identifiants

Citer

Gianira Alfarano, Martino Borello, Alessandro Neri. A geometric characterization of minimal codes and their asymptotic performance. Advances in Mathematics of Communications, 2019, 16 (1), pp.115. ⟨10.3934/amc.2020104⟩. ⟨hal-03852306⟩
40 Consultations
60 Téléchargements

Altmetric

Partager

More