Asymptotically quasiperiodic solutions for time-dependent Hamiltonians - Archive ouverte HAL
Pré-Publication, Document De Travail (Preprint/Prepublication) Année : 2023

Asymptotically quasiperiodic solutions for time-dependent Hamiltonians

Résumé

In 2015, M. Canadell and R. de la Llave consider a time-dependent perturbation of a vector field having an invariant torus supporting quasiperiodic solutions. Under a smallness assumption on the perturbation and assuming the perturbation decays (when t → +∞) exponentially fast in time, they proved the existence of an asymptotic KAM torus. An asymptotic KAM torus is a time-dependent family of embedded tori converging in time to the invariant torus associated with the unperturbed system. In this paper, we generalize this result in the particular case of time-dependent Hamiltonian systems. The exponential decay in time is relaxed (due to the geometrical properties of Hamiltonian systems) and the smallness assumption on the perturbation is removed.
Fichier principal
Vignette du fichier
Art1-2.pdf (411.66 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03849794 , version 1 (12-11-2022)
hal-03849794 , version 2 (30-01-2023)

Identifiants

  • HAL Id : hal-03849794 , version 2

Citer

Donato Scarcella. Asymptotically quasiperiodic solutions for time-dependent Hamiltonians. 2023. ⟨hal-03849794v2⟩
83 Consultations
45 Téléchargements

Partager

More