Serre weight conjectures for $p$-adic unitary groups of rank 2 - Archive ouverte HAL
Article Dans Une Revue Algebra & Number Theory Année : 2022

Serre weight conjectures for $p$-adic unitary groups of rank 2

Résumé

We prove a version of the weight part of Serre's conjecture for mod $p$ Galois representations attached to automorphic forms on rank 2 unitary groups which are non-split at $p$. More precisely, let $F/F^+$ denote a CM extension of a totally real field such that every place of $F^+$ above $p$ is unramified and inert in $F$, and let $\overline{r}: \textrm{Gal}(\overline{F^+}/F^+) \longrightarrow {}^C\mathbf{U}_2(\overline{\mathbb{F}}_p)$ be a Galois parameter valued in the $C$-group of a rank 2 unitary group attached to $F/F^+$. We assume that $\overline{r}$ is semisimple and sufficiently generic at all places above $p$. Using base change techniques and (a strengthened version of) the Taylor-Wiles-Kisin conditions, we prove that the set of Serre weights in which $\overline{r}$ is modular agrees with the set of Serre weights predicted by Gee-Herzig-Savitt.
Fichier principal
Vignette du fichier
KS-v7.pdf (1.08 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03840819 , version 1 (06-11-2022)

Identifiants

Citer

Karol Koziol, Stefano Morra. Serre weight conjectures for $p$-adic unitary groups of rank 2. Algebra & Number Theory, In press. ⟨hal-03840819⟩
30 Consultations
29 Téléchargements

Altmetric

Partager

More