Extremal weights and a tameness criterion for mod $p$ Galois representations - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Extremal weights and a tameness criterion for mod $p$ Galois representations

Résumé

We study the weight part of Serre's conjecture for generic $n$-dimensional mod $p$ Galois representations. We first generalize Herzig's conjecture to the case where the field is ramified at $p$ and prove the weight elimination direction of our conjecture. We then introduce a new class of weights associated to $n$-dimensional local mod $p$ representations which we call \emph{extremal weights}. Using a ``Levi reduction" property of certain potentially crystalline Galois deformation spaces, we prove the modularity of these weights. As a consequence, we deduce the weight part of Serre's conjecture for unit groups of some division algebras in generic situations.
Fichier principal
Vignette du fichier
MasterOBWArXiV.pdf (1.07 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03840799 , version 1 (06-11-2022)

Identifiants

Citer

Daniel Le, Bao Viet Le Hung, Brandon Levin, Stefano Morra. Extremal weights and a tameness criterion for mod $p$ Galois representations. 2022. ⟨hal-03840799⟩
46 Consultations
46 Téléchargements

Altmetric

Partager

More