Improving Graph Neural Networks at Scale: Combining Approximate PageRank and CoreRank - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Improving Graph Neural Networks at Scale: Combining Approximate PageRank and CoreRank

Résumé

Graph Neural Networks (GNNs) have achieved great successes in many learning tasks performed on graph structures. Nonetheless, to propagate information GNNs rely on a message passing scheme which can become prohibitively expensive when working with industrial-scale graphs. Inspired by the PPRGo model, we propose the CorePPR model, a scalable solution that utilises a learnable convex combination of the approximate personalised PageRank and the CoreRank to diffuse multi-hop neighbourhood information in GNNs. Additionally, we incorporate a dynamic mechanism to select the most influential neighbours for a particular node which reduces training time while preserving the performance of the model. Overall, we demonstrate that CorePPR outperforms PPRGo, particularly on large graphs where selecting the most influential nodes is particularly relevant for scalability.
Fichier principal
Vignette du fichier
ImprovingGraphNeuralNetworksAtScaleCombiningApproximatePageRankAndCoreRank.pdf (302.26 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03838863 , version 1 (03-11-2022)

Licence

Identifiants

  • HAL Id : hal-03838863 , version 1

Citer

Ariel R. Ramos Vela, Johannes F. Lutzeyer, Anastasios Giovanidis, Michalis Vazirgiannis. Improving Graph Neural Networks at Scale: Combining Approximate PageRank and CoreRank. New Frontiers in Graph Learning (GLFrontiers) NeurIPS Workshop 2022, Dec 2022, New Orleans, United States. ⟨hal-03838863⟩
99 Consultations
87 Téléchargements

Partager

More