Effects of Surface Tension on the Richtmyer-Meshkov Instability in Fully Compressible and Inviscid Fluids - Archive ouverte HAL
Article Dans Une Revue Physical Review Fluids Année : 2021

Effects of Surface Tension on the Richtmyer-Meshkov Instability in Fully Compressible and Inviscid Fluids

Kaito Tang
  • Fonction : Auteur
Wouter Moster
  • Fonction : Auteur
Daniel Fuster
Luc Deike
  • Fonction : Auteur
  • PersonId : 1096530

Résumé

Novel numerical simulations investigating the Richtmyer-Meshkov instability (RMI) with surface tension are presented. We solve the two-phase compressible Euler equation with surface tension and interface reconstruction by a volume-of-fluid method. We validate and bridge existing theoretical models of surface tension's effects on the RMI in linear, transitional and nonlinear post-shock growth regimes. Under an appropriately constructed dimensional framework, we find good agreement with existing linear incompressible theory in the small-amplitude (linear) oscillatory regime for positive Atwood numbers, and we show that negative Atwood numbers can be accommodated by an appropriate modification to the theory. Next, we show good agreement with nonlinear theory for asymptotic interface growth in the limit of small surface tension. Finally, we heuristically identify a criterion for transition from the linear into the nonlinear oscillation regime. These results highlight the utility of this numerical method for compressible problems featuring surface tension, and pave the way for a broader investigation into mixed compressible/incompressible problems.
Fichier principal
Vignette du fichier
RMI_Paper_Draft-6.pdf (1.01 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03834538 , version 1 (30-10-2022)

Identifiants

  • HAL Id : hal-03834538 , version 1

Citer

Kaito Tang, Wouter Moster, Daniel Fuster, Luc Deike. Effects of Surface Tension on the Richtmyer-Meshkov Instability in Fully Compressible and Inviscid Fluids. Physical Review Fluids, 2021. ⟨hal-03834538⟩
25 Consultations
104 Téléchargements

Partager

More