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Novel numerical simulations investigating the Richtmyer-Meshkov instability (RMI) with surface tension
are presented. We solve the two-phase compressible Euler equation with surface tension and interface recon-
struction by a volume-of-fluid method. We validate and bridge existing theoretical models of surface tension’s
effects on the RMI in linear, transitional and nonlinear post-shock growth regimes. Under an appropriately
constructed dimensional framework, we find good agreement with existing linear incompressible theory in the
small-amplitude (linear) oscillatory regime for positive Atwood numbers, and we show that negative Atwood
numbers can be accommodated by an appropriate modification to the theory. Next, we show good agreement
with nonlinear theory for asymptotic interface growth in the limit of small surface tension. Finally, we heuris-
tically identify a criterion for transition from the linear into the nonlinear oscillation regime. These results
highlight the utility of this numerical method for compressible problems featuring surface tension, and pave
the way for a broader investigation into mixed compressible/incompressible problems.

I. INTRODUCTION

The Richtmyer-Meshkov instability (RMI) occurs when two regions of fluids with different densities and
separated by a perturbed interface undergo an impulsive acceleration, which is often supplied by the passage
of a shock wave. The misalignment of the pressure and density gradients incurred by the acceleration results
in the baroclinic generation of vorticity deposited on the interface, and hence in the subsequent growth and
development of the perturbations.

The RMI is relevant to many applications. It is well-known to inhibit the attainment of fusion in inertial
confinement fusion contexts [1]; it can enhance mixing in high-speed airbreathing engines [2]; and may also drive
mixing in certain supernovae [3] and magnetic field amplification in supernova remnants travelling through
the interstellar medium [4].

If at least one of the fluids is a liquid, or if the interface between the fluids is a membrane [5], surface tension
may play a role. This is the case for the familiar example of dropping a bucket filled with water on the ground
[6]; the impact on the ground constitutes an impulsive acceleration which promotes the RMI on the water
surface. Compressible effects in the gas phase are explicitly involved in the problem of high-speed droplet
aerobreakup, which is challenging to investigate both in the laboratory (see Theofanous [7] and references)
and numerically [8]. In this connection, the RMI may be relevant to the early-time behaviour of the shocked
droplet. In any case, the effect of surface tension on the fine-scale structures at these early times is typically
not accounted for by large-scale numerical simulations on grounds of insufficient resolution, even with adaptive
mesh refinement (AMR) techniques (see for example Meng and Colonius [8]).

As a fundamental problem, the RMI with surface tension has seen some prior investigation. Mikaelian [5]
performed a linear stability analysis of it, finding that the (sufficiently strong) surface tension induces a stable
oscillation in the shocked interface whose amplitude and frequency depend on the magnitude of the surface
tension. If the surface tension is sufficiently weak, the interface enters a nonlinear growth regime featuring
asymmetrically formed narrow ”spike” and broad ”bubble” structures interpenetrating between the fluids
[9, 10]; in this regime, Sohn [11] provided an asymptotic analysis of the velocity of the bubble-structures, and
included a brief numerical verification using a phase-field interface model in incompressible fluids [12].

The existing studies reveal only a limited understanding of the RMI with surface tension. First, the stabi-
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lizing effect of surface tension on the RMI suggests that it may inhibit transition to the nonlinear regime of
bubble and spike development. However, for sufficiently long wavelengths, or sufficiently small surface tensions
(corresponding with small values of the Weber number, defined as the ratio between inertial and surface ten-
sion forces), the interface perturbations may grow large enough to escape the linear regime before reaching the
maximum amplitude of oscillation, so that Mikaelian’s analysis [5] no longer applies. This constitutes a critical
Weber number for the RMI with surface tension, which to our knowledge has not been identified. Second,
this critical value will not in general correspond with the vanishingly small surface tension required for Sohn’s
[11] asymptotic analysis; we expect that there exist cases with intermediately small surface tensions (that is,
large Weber numbers) whose perturbation growth patterns are currently not well understood. Finally, none of
these studies, which rely on numerical support of theoretical results, consider the effects of compressible flow,
which may appear for example in the case of shocked-membrane problems arising in shock tube environments
[5], due in part to the lack of compressible-flow solvers that include surface tension effects.

In this study we present fully nonlinear, compressible numerical simulations of the inviscid RMI with surface
tension, using Fuster and Popinet’s [13] recently developed and implemented numerical technique in the Basilisk
package. In addition to the technical significance of this study, its purpose is, firstly, to provide numerical
support for the studies of Mikaelian [5] and Sohn [11] in a compressible environment; secondly, to provide insight
into the nonlinear development of the problem, considering especially the asymptotic large-time behaviour at
small surface tensions (large Weber numbers); and finally, to find the critical Weber number required to
suppress the RMI and, in particular, to restrict oscillations of the perturbation to the linear regime.

Our study is structured as follows. In §II we develop a theoretical scaling based on that of Mikaelian [5] to
predict the post-shock perturbation growth in the linear phase. In §III we present a formulation of the problem
and introduce the numerical method. Afterwards, with the post-shock parameters determined in §IV A, we
compare Mikaelian’s [5] theory with the scaled numerical results in §IV B, and propose a modified theoretical
model based on Vandenboomgaerde et al. [14]. We introduce the theory of Sohn [11] on the perturbation’s
nonlinear growth, and compare it with the scaled numerical results in §IV C. Then in §IV D we propose a
heuristic criterion to delineate the perturbation’s develop patterns in its transition to nonlinear growth regime.
We eventually conclude the study in §V with some remarks on future work.

II. NON-DIMENSIONAL SCALING MODEL

We first adapt a theoretical result from a linear stability analysis of the incompressible RMI with surface
tension, due to Mikaelian [5], into a consistent non-dimensional formulation which can be interpreted in the
compressible flow problem featuring a shock wave.

The flow configuration is described in Figure 1, where the fluid to the left is labelled ‘1’, and the fluid to
the right labelled ‘2’. The two inviscid fluids and the sinusoidally perturbed interface are all set to be at rest.
The incident shock travels rightwards from the left boundary x = xS to hit the interface, whose passage will
first bring the density and pressure in fluid 1 to intermediate values denoted by subscript ‘L’. As is shown in
Figure 1(b), after the shock-interface interaction, the interface will be accelerated and acquire a velocity jump
∆v; in the meanwhile, part of the shock energy will be transferred into fluid 2 in the form of a transmitted
shock, and the rest will reflect back into fluid 1 as a reflected wave, whose passage will bring the density and
pressure in fluid 1 to their post-shock values. The perturbed interface will then evolve under the influence of
surface tension σ.

The non-dimensional groups governing the problem can be derived with respect to pre- and post-shock
state of the interface. We first discuss the pre-shock state, which represents the a priori understanding of
the system, before next discussing the post-shock state, to which Mikaelian’s analysis [5] naturally applies.
Afterwards, we will discuss how the post-shock state may be determined from knowledge of the pre-shock
state. In the following, minus-sign superscripts denote the pre-shock state, and plus-sign superscripts denote
post-shock state.

A. Pre-shock dimensionless parameters

We discuss the state of the problem prior to the shock-interface interface. The density of the pre-shock
fluids is given by ρ−i (i = 1, 2), and has a dimension of ML−3, where M is mass, L is length and T is time;
the unperturbed pressure in each fluid is p−0 (dimension ML−1T−2); and the specific heat ratio of each fluid is
Γi (dimensionless). The fluids are considered inviscid in this model. The interface which separates the fluids
has a monochromatic, sinusoidal perturbation of wavelength λ and amplitude η−0 , each with dimension L, and
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(a)

(b)

FIG. 1: Sketches for the pre- (a) and post-shock (b) conditions of the RMI problem with surface tension.

corresponding wavenumber k = 2π/λ (dimension L−1). The surface tension is given by σ (dimension MT−2).
The perturbed interface slightly perturbs the pressure in the two fluid by the action of surface tension; we
assume this pressure-perturbation has negligible effect on the subsequent evolution of the system. Finally,
the incident shock is planar with a speed us,I and induces a jump ∆u in fluid 1, which is known analytically
from the Rankine-Hugoniot shock relations. Applying Buckingham’s theorem, we form the following four
dimensionless groups apart from Γi:

s− ≡ η−0 k = 2π
η−0
λ
, A− ≡ ρ−2 − ρ

−
1

ρ−2 + ρ−1
, We− ≡ ρ−1 + ρ−2

σk
A−

2
∆u2, Ms,I =

us,I√
Γ1p0/ρ

−
1

(1)

Here s− characterizes the slope of the initial perturbed interface; A− is the Atwood number, which represents
the initial density setup; We− is the Weber number, which measures the strength of surface tension, and Ms,I

is the Mach number of incident shock.

B. Post-shock dimensionless parameters

We will now discuss the application of Mikaelian’s incompressible, impulsive model [5] to the compressible
case, and develop the appropriate dimensionless parameters. Mikaelian predicts that, if the perturbation
development is in the linear regime (i.e. when the slope s remains small), and the effect of compressibility is
negligible after the shock-interface interaction, surface tension as a restoring force will cause the post-shock
perturbation amplitude η(t) to oscillate sinusoidally,

η (t) = η+
0 cos (ωt) +

η̇+
0

ω
sin (ωt) , (2)

where η+
0 is the post-shock initial perturbation amplitude, and the capillary angular frequency ω is defined in

the following form, with post-shock fluid densities ρ+
1 and ρ+

2 :

ω =

√
k3σ

ρ+
1 + ρ+

2

. (3)
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η̇+
0 is the post-shock initial perturbation growth rate, which Mikaelian [5] gives as,

η̇+
0 = ∆vkA+η+

0 , (4)

where the post-shock Atwood number A+ ≡ (ρ+
2 − ρ

+
1 )/(ρ+

2 + ρ+
1 ), and ∆v is the post-shock velocity jump

of the interface. (4) is identical with a version of Richtmyer’s [15] prescription for growth rate in the RMI
without surface tension.

A set of dimensionless groups to describe the growth characteristics of the RMI can be defined in terms of
post-shock variables to be,

s+ = 2π
η+

0

λ
, A+ ≡ ρ+

2 − ρ
+
1

ρ+
2 + ρ+

1

, We+ ≡ ρ+
1 + ρ+

2

σk
A+2

∆v2 (5)

These are of the same form as the pre-shock parameters. The time-dependent amplitude η(t) ≡ η and time t
can be included in the non-dimensionalization by,

η̃ ≡
η

η+0√
1 +We+

, t̃ ≡ kA+∆v√
We+

t (6)

where the tildes indicate nondimensional variables. With these parameters introduced, Mikaelian’s model (2)
can be summarized in the following normalized form,

η̃ = sin

(
t̃+ arctan

1√
We+

)
. (7)

Next we discuss how the post-shock parameters may be determined from the pre-shock parameters.

C. Determination of post-shock parameters

It has been concluded in Velikovich [16] that in the weak-shock limit (incident shock’s Mach number Ms,I ∼
1), the pre- and post-shock slope, Weber and Atwood number values are close to each other and there is no
need to distinguish between them. It is also in the same weak-shock limit that Richtmyer’s prescription is
reported to give most accurate results (see for example Figure 1 in Velikovich et al. [17].) In general, however,
the post-shock parameters may deviate significantly from the pre-shock values.

Moreover, a change in sign of the pre-shock Atwood number A− may introduce a qualitative change in
the shock interaction process [14, 18, 19]. When the shock wave interacts with the interface, it undergoes
a refraction process which results in a transmitted shock and a reflected wave, which may be a shock or a
rarefaction wave. The reflected wave type depends on A− and Γi. Drake [18] identifies the following critical
pre-shock Atwood number A−c ,

A−c =
Γ1 − Γ2

Γ1 + Γ2 + 2
. (8)

When A− < A−c , a reflected rarefaction is expected to form in fluid 1; otherwise a reflected shock is expected.
Within our work, we set the specific heat ratios as Γ1 = Γ2 ≡ γ = 1.4, hence A−c = 0, i.e. negative pre-shock
Atwood numbers A− correspond to reflected rarefactions, and positive ones to reflected shocks.

It has been reported that separate small-amplitude analyses are required for cases with reflected shocks and
rarefactions when surface tension is absent [14, 20]. Nevertheless, Mikaelian’s model [5] does not distinguish
between the two situations and the post-shock parameters (see §II B for definition) are assumed known.

Finally, the post-shock and pre-shock amplitudes η+
0 , η

−
0 are discussed by Vandenboomgaerde et al. [14]

and Mikaelian [21] and can be related by the compression ratio r, which is derived from the formulations of
Richtmyer [15]:

r ≡ η+
0

η−0
= 1− ∆v

us,I
, (9)

where us,I is the speed of the incident shock, which can be calculated using the pre-shock parameters.
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III. FORMULATION AND METHODOLOGY

A. Governing equations

We solve the two-phase compressible Euler equations with surface tension, which are written,

∂f

∂t
+ u · ∇f = 0 (10)

∂ρi
∂t

+∇ · (ρiui) = 0 (11)

∂ρiui

∂t
+∇ · (ρiuiui) = −∇pi (12)

∂

∂t

(
ρiei +

1

2
ρiu

2
i

)
+∇ ·

[
ui

(
ρiei +

1

2
ρiu

2
i

)]
= −∇ · (uipi) . (13)

The advective equation (10) is applied to determine the interface position, featuring a Heaviside function f ,
which jumps from 1 (in fluid 1) to 0 (in fluid 2) at the interface. Equations (11) and (12) are respectively
the continuity and momentum equation for each fluid (i=1, 2), where pi is the fluid pressure. The influence
of surface tension σ is incorporated into the pressure gradient term by applying the Young-Laplace equation
p1 − p2 = σκ to the grid cells containing the interface, where κ is the local interface mean curvature.

The energy equation (13) is included owing to the presence of compressibility, where ei denotes the internal
energy of each fluid. Equations of state are still required to close the equation system. While both incom-
pressible and compressible fluids can be modeled simultaneously by Mie-Grüneisen equation of state in the
numerical solver, for this study we restrict our attention to entirely compressible flow by applying the ideal
gas law as a special case:

ρiei =
pi

Γi − 1
(14)

B. Numerical method

The simulations in this work are conducted within the open-source solver Basilisk using the all-Mach scheme
proposed by Fuster and Popinet [13] for multiphase flows, which is capable of handling mixed compressible-
incompressible fluids. This is a second-order accurate finite volume numerical scheme with hyperbolic up-
winding suitable for shock capturing. Within the scheme, a Volume of Fluid (VOF) method is used to model
the fluid interface, which guarantees a sharp representation of the interface and reduces the parasitic currents
induced by surface tension.

The problem is initialized within a rectangular simulation domain of size nD ×D, where D is the width of
the domain and n = 5, 7 or 11, depending on the particular case. The shock is initialized at the left boundary,
so that the domain is defined by Ω = [xS , nD + xS ] × [−D, 0]. The initial fluid configuration is divided into
two fluid regions (Fluid 1 and 2 on the left and right respectively) by an initial regularized Heaviside function
f0. The boundary conditions on the top and bottom of the domain are periodic. We use a zero-gradient
boundary condition at the right boundary, while at the left side Dirichlet conditions are applied according to
the post-shock conditions for a incident shock of Mach number Ms; these are discussed further below.

The discretized grid size is defined as ∆x = D/2L, where L is the resolution level. Most of our simulations
are conducted on L = 9, while for convergence studies we also run certain cases on levels L = 8 and L = 10 for
comparison. The discretized timestep is characterized and controlled by a non-dimensional constant CFLac =
cm∆t/∆x, where cm is the expected maximum local speed of sound. For all simulations conducted in this
work, we set CFLac = 0.5.

The output files produced by the simulation are collected and processed to reconstruct the interface profile,
which allows for analysis of the non-dimensional perturbation amplitude η̃ and time t̃ at each time-step.
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1. Numerical initialization of the interface and incident shock

The interface between Fluids 1 and 2 is perturbed with a single-mode cosine function, which takes the form
of x(y) = xI + η−0 cos ky. The average position of the interface xI is set to 0, and the wave number of the
single-mode perturbation is set to k = 2π

D , so that the domain spans a single wavelength. For the initial

perturbation amplitude η−0 , we set it sufficiently small to satisfy the linear regime prerequisite s− = kη−0 � 1;
we choose η−0 = 0.01, 0.015 or 0.02, thus allocating approximately 5-10 grids across the initial perturbation
profile at resolution level L = 9. This is sufficient to capture the growth characteristics of the RMI independent
of the numerical resolution, as shown in §A.

As is mentioned in §III A, the interface is tracked by a Heaviside function f that jumps from 1 to 0 at
its location. In numerical simulations, we apply a hyperbolic-tangent regularization in the initial interface’s
neighborhood to smooth the local representation of f in a Cartesian mesh [22], which takes the form of
f0 = 1

2

(
1− tanh

[
N
8

(
x− η−0 cos ky

)])
. Here N = n(2L) is the number of cells in the long dimension of the

rectangular simulation domain. This makes the width of f0’s transition zone approximately the same for
different resolution levels.

The incident shock is initialized at the left boundary of the simulation domain x = xS by assigning the values
of ρL, qL, EL to the conservative variables via the aforementioned Dirichlet boundary conditions. We set the
left boundary xS immediately next to the initial interface at xI = 0, so that the surface-tension-induced self-
oscillation behavior does not have sufficient time to influence the interface’s pre-shock perturbation amplitude
before its interaction with the incident shock.

2. Parameter space

We present the pre-shock non-dimensional parameter space to be investigated in this work. Namely, we
conduct the simulations with pre-shock perturbation amplitude values going from low (0.01), medium (0.015)
to high (0.02), corresponding to s− values of 0.02π, 0.03π and 0.04π. We set Ms,I = 2 (strong-shock) in most
situations, where compressibility’s influence is already nontrivial but has not yet caused significant deviations
from the impulsive model (see Figure 8 in [23]); while also setting Ms,I = 1.2 (weak-shock) in certain cases
to allow for discussions on its influence. Pre-shock Atwood numbers are A− = 9/11 and −9/11 , where the
former is achieved by setting ρ−1 = 0.1, ρ−2 = 1, and the latter by setting ρ−1 = 1, ρ−2 = 0.1. The magnitude
of pre-shock Weber numbers We− we investigate ranges from 101 to 103, which covers all three of the linear,
transitional and nonlinear post-shock growth-rate regime.

IV. RESULTS

A. Post-shock parameters

As mentioned in §II, the post-shock state variables ρ+
1 , ρ

+
2 , A

+, ∆v and compression ratio r are required to
calculate the post-shock dimensionless parameters, and are determined in the present study from numerical
diagnostics. While these parameters can be predicted theoretically via (B1),(B2) [21], the theory does not
account for surface tension. This topic is discussed further in the appendix, §B.
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(a) (b)

FIG. 2: The development of post-shock density values ρ+i in cases with pre-shock Atwood number A− = 9/11 (a) and A− = −9/11 (b)
measured from numerical diagnostics. The post-shock densities of the two fluids are observed to eventually settle down at steady-state
values, which are chosen as the post-shock values determined by numerical diagnostics.

In the diagnostics, the post-shock state variables are extracted close to the interface, and averaged over y to
remove variations due to the interface perturbation. Figure 2 shows the diagnostic outputs for sample cases
with A− = ±9/11, We− = 159, 239, and η−0 = 0.01, 0.015. All measured variables behave similarly in the
diagnostics: there is a short transient period at early times associated with shock-interface interaction, before
the measured variables stabilize as the transmitted and reflected wavefronts move away from the post-shock
interface. The steady-state values are not affected by the value of η−0 , as expected, and are taken as the
post-shock state. As discussed in the appendix B, these numerical diagnostics are more reliable for the present
study than the theory in [21]. Note that, apart from providing information about the post-shock flow fields, the
existence of steady-state density values also consolidates the assumption [5] that compressibility’s influences
are limited to the shock-interface interaction period, and the post-shock flow fields near the interface can be
treated as nearly incompressible, which is also confirmed in other numerical results [6, 24].

B. Linear regime

We now test the normalized model of Mikaelian [5] in the form of (7), which predicts that the scaled η̃ − t̃
curves with different Atwood, Weber and Mach numbers will show good collapsing (provided that the post-

shock Weber number We+ is sufficiently large for the phase shift term ∆ϕ = arctan 1/
√
We+ to vanish), with

peaks at η̃ = 1.

The results are presented in Figure 3, where they are organised into three major categories: strong shock
(Ms,I = 2) with negative Atwood number (A− = −9/11) in the first row, strong shock with positive Atwood
number (A− = 9/11) in the second and weak shock (Ms,I = 1.2) with positive Atwood number in the third

row. For each Atwood/Mach number category, a sweeping of Weber number We− is conducted, with the
dimensional η− t curves plotted in the left column (Figures 3(a), 3(c), 3(e)) and the scaled curves according to
Equation (6) shown in the right (Figures 3(b), 3(d), 3(f)). To facilitate comparison of simulation results with
Mikaelian’s model [5], we also plot the η̃ − t̃ curves predicted by (7) in dashed lines, for which the phase shift

term arctan 1/
√
We+ is neglected. In the legend regions, the Weber number values outside the parentheses

indicate pre-shock value We−, while their counterparts within the parentheses indicate post-shock value We+.

In the following parts, we will first discuss the influence of Atwood number A− on post-shock perturbation
growth in IV B 1 by comparing the first and second row in Figure 3, and then the influence of incident shock’s
Mach number Ms,I in IV B 2 by comparing the second and third row of the same figure.



8

(a) (b)

(c) (d)

(e) (f)

FIG. 3: Numerical results compared with Mikaelian’s theory [5]. Upper row: strong shock (Ms,I = 2) with negative Atwood number

(A− = −9/11); middle row: strong shock (Ms,I = 2) with positive Atwood number (A− = 9/11); lower row: weak shock (Ms,I = 1.2)

with positive Atwood number (A− = 9/11). Left column: raw outputs; right column: normalized results. Good collapsing patterns

are observed for strong-shock cases (Ms,I = 2), among which those with positive Atwood number A− = 9/11 show a good qualitative
agreement with Mikaelian’s theory [5]; whereas the weak-shock cases display poor collapsing under the normalization.
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1. Effect of initial fluid density configuration

As is shown in Figures 3(a) and 3(c), the post-shock perturbation amplitude η will first increase with
diminishing growth rate. At small post-shock Weber number We+, η will reach a peak and then decrease,
whereas for large We+ values the peak will not be reached in the limited simulation domain. These findings
agrees with the numerical results of [25].

When the η̃− t̃ curves are normalized, they overlap very well for both positive and negative Atwood number
cases with Ms,i = 2. However, discrepancy exists between the two Atwood number classes: the positive
Atwood number cases have their first normalized peaks around η̃ = 1.1 (Figure 3(b)), while those of the
negative Atwood number cases are much higher, being around η̃ = 7.3 (Figure 3(d)). Consequently, the
positive Atwood number cases conform to Mikaelian’s model (7) more closely, whereas the negative Atwood
number cases show a nontrivial deviation from the same model.

This negative-Atwood discrepancy is rooted in the incompressible nature of Mikaelian’s model [5], and
might be traced further back to the situations where surface tension σ is absent. As the post-shock Weber
number We+ asymptotically approaches infinity, Mikaelian’s model [5] will reduce to Richtmyer’s impulsive
prescription [15] in the form of Equation (4). Vandenboomgaerde et al. [14] and Velikovich [16] observe that
this prescription usually gives good results for positive Atwood number cases, but fails for negative Atwood
number cases where η̇ is not proportional to A+ [21] and other alternatives are available (e.g. [14, 19, 26]).

We will now seek to develop a correction to the linear theory of [5] that can effectively reduce the discrepancy
caused by opposite signs of Atwood numbers. An alternative to Equation (4) is given in [14] as:

η = η+
0 + k∆v

[
1

2

(
A+η+

0 +A−η−0
)
− 1

6

(
A+ −A−

) (
η+

0 − η
−
0

)]
t (15)

In this prescription, the post-shock perturbation growth rate now depends on both pre- and post-shock
states, which is different from Mikaelian’s model [5], as the latter is only related to the post-shock state. We
then seek to compare the performance of Vandenboomgaerde’s prescription [14] with Richtmyer’s [15] in the
zero-surface-tension cases with different Atwood number setups.

As is shown in Figures 4(a) and 4(b), the slope of Vandenboomgaerde’s prescription (15) matches better
with simulation data in both positive and negative Atwood number cases despite an overestimation for the
latter, while Richtmyer’s prescription (4) [15] shows a slight underestimation for positive Atwood number and
significantly deviates from simulations with negative Atwood number. The underestimation of Richtmyer’s
prescription [15] corresponds back to the deviation patterns of our simulation data from the scaling model in
the previous part, where the A− = 9/11 cases slightly overshoots the theoretical maximum η̃max = 1 under
the scaling, and those with A− = −9/11 significantly overestimates the same maximum.

Consequently, in order to modify Mikaelian’s model [5] for a better performance, we tentatively replace
the Richtmyer’s prescription embodied in (2) with Vandenboomgaerde’s [14]. To this end, we introduce the

modified Atwood number Ã based on Vandenboomgaerde’s work [14], which may be viewed as an average of
pre- and post-shock Atwood numbers A− and A+ involving compression ratio r:

Ã ≡ 1

2

(
A+ +

A−

r

)
− 1

6

(
A+ −A−

)(
1− 1

r

)
(16)

With this modified Atwood number defined, the post-shock dimensionless parameters and normalized
perturbation-growth model (7) proposed in §II B can be formally retained by replacing all A+ with Ã.

When the modified model is compared with simulation results, as is shown in Figures 4(c) and 4(d), within
each Atwood number category the normalized curves still shows good collapsing, and good agreement is found
between the results of the two Atwood numbers with opposite signs, as the first peaks of all normalized
curves are now around (t̃, η̃) = (1.65, 0.8). This maximum η̃ value of 0.8 is less than the ideal 1 expected
by the modified model, which is likely caused by Vandenboomgaerde’s prescription’s [14] aforementioned
overestimation of η̇+

0 in zero-surface-tension cases; but it is still a considerable improvement compared with
the original model of Mikaelian [5], especially for negative Atwood number cases since their discrepancy in
peak values with positive Atwood ones is now greatly reduced.

If the impulsive base of Mikaelian [5] (2) is to be retained, more accurate models for perturbation growth
under the influence of surface tension can be derived by swapping Vandenboomgaerde et al.’s prescription
(Equation (16)) for more precise ones, whose proposal is a fundamental problem for RMI studies and require
detailed investigation of the shock-interface interaction period, which is out of the scope of this work.
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(a) (b)

(c) (d)

FIG. 4: Upper row: Comparison between the matching of Richtmyer (1960)’s [15] and Vandenboomgaerde et al. (1998) [14]’s theory
with simulation data in cases without surface tension; lower row: simulation results scaled using the modified model in cases with surface
tension. (a, c): A− = 9/11, (b, d): A− = −9/11. Vandenboomgaerde (1998)’s theory [14] shows a better match with simulation results
in both negative and Atwood number cases without surface tension, leading to improved performance of the modified theoretical model.

2. Effect of incident shock strength

Apart from surface tension and initial density setups, Mach number of the incident shock Ms,i also plays
a significant role in the post-shock perturbation growth, as it is directly connected with shock strength and
conpressibility’s effects. Since Mikaelian’s model [5] is essentially impulsive and incorporates Richtmyer’s
prescription [15], it is natural to expect better matching of the simulation results with our scaled model in the
weak shock limit.

However, as is shown in Figure 3(f), the reduce of Ms,i from 2 to 1.2 leads to very poor collapsing based on
our non-dimensional model. Even though the normalized peaks are generally closer to η̃ = 1 compared with
the strong-shock cases, only the curve of the We− = 159.15 case resembles the prediction by scaled model
(7). An unexpected transition zone is detected for Weber numbers between 159.15 and 238.73, where the
normalized curves show an abrupt leftward shift accompanied by a drop in peak values. When We− further
increases to 716.2, the normalized curve is noticeably deformed, showing a kink before the first peak.

Figure 3(e) indicates that the cases with We− beyond 238.73 undergoes potential changes in the flow field
near the moving interface. We then seek to verify this by analyzing the development patterns of the interface’s
moving speed vI and the local pressure values immediately to the left (pl) and right (pr) of the interface.
These quantities are normalized by their reference values at t = 1 in Figure 5 for the sake of clarity.

The cases with pre-shock Weber number We− beyond 159.15 experience a simultaneous jump in interface
moving velocity and local pressure long after the initial shock-interface interaction period, whose exact location
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(a) (b)

FIG. 5: Tracking of the time development patterns of vI (a), pl and pr (b) for the weak-shock (Ms,I = 1.2) cases. Jumps in interface

velocity and pressure are observed for cases with We− = 239 and 318, which are caused by the interaction of secondary shocks with the
interface.

eventually settles at t = 1.7 as We− increases. The jumps are only a few percents in value, after which the
interface velocity vI starts to oscillate and decrease. There is also a slight time delay between the development
of pl and pr after the jump, which is absent in the case with We− = 159. The subtle kinks in the curves of
perturbation amplitude η, e.g. at t = 3 in the case with We− = 198.94, occur at the same time with the
jumps, indicating a close connection between the two phenomena.

These odd behaviors are identified with continuous late-time interactions between secondary shocks and
the moving interface, which are not found in the strong-shock cases. Similar behavior is observed in [27] at
Ms,I = 1.2, where it is found ‘an inherently nonlinear and compressible phenomenon’ originating from self-
interactions at the edges of transmitted and reflected shocks, which is surely out of the incompressible scope
of Mikaelian’s model [5]. In our case, a secondary shock emanates from the left boundary, which interacts
with the interface and causes the jump in local flow fields. Afterwards, perturbed structures develop near the
left boundary, from where more pressure waves transmit back to the interface, hence the later high-frequency
oscillations.

The absence of similar influences in the We− = 159.15 case and all the strong-shock cases might be caused
by stronger curbing effects of surface tension on secondary shocks’ interaction with the interface. For the
strong-shock cases, the post-shock fluid travels at a higher speed, which might reduce the amount of secondary
shocks able to catch up with the moving interface.

Consequently, we conclude that the scaled model (7) based on Mikaelian [5] only stands for the strong-shock
positive Atwood number cases, whereas it shows a non-trivial deviation in the peak values of η̃, but still
keeps good collapsing for the simulation of strong-shock negative Atwood number cases. The negative-Atwood
deviation may be reduced by introducing more accurate prescriptions for post-shock initial perturbation growth
rate η+

0 . As for the weak-shock cases, the significant reduce in post-shock fluid velocities and surface tension
leaves room for the secondary shocks to interact with the interface, which leads to poor collapsing and deviation
from the scaled model (7).

C. Nonlinear regime

When surface tension becomes small enough, it can no longer curb the perturbation growth and the late-
time development of asymmetric spikes and bubbles on the interface. Figure 6 shows the development of a
bubble and spike within the domain for We− = 3819.7. Sizes of the bubble and the spike can be calculated
by measuring the difference between the local and average interface positions, whose time derivatives yield
bubble velocity UB and spike velocity US .

The measured bubble velocities UB and spike velocities US are plotted against physical time t and shown in
Figure 7, where cases with nonlinear and transitional Weber numbers are plotted together. No normalization
is applied in Figure 7, as we desire to compare the evolution of bubble velocities of different cases at the
same physical time t. Generally speaking, our results agree well in trend with those gained by front-tracking
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FIG. 6: A series of We− = 3819.7 simulation snapshots showing the perturbed interface’s evolution from the initially sinusoidal shape
to one with two half-bubbles (across the periodic boundaries) and a spike (at the center) at late time.

techniques in [27].

(a) (b)

FIG. 7: Bubble (a) and spike (b) velocity’s time development patterns for transitional and nonlinear cases with A− = 9/11. As Weber
number increases, the curbing effect of surface tension on the post-shock perturbation growth fades away, and the time development

patterns of bubble and spike velocities remain roughly the same within a large range of high Weber numbers (greater than 103).

The evolution patterns of bubble velocity are almost the same initially for different Weber numbers, display-
ing damped oscillating behaviors up to around t = 0.9, followed by a constantly decreasing period. Similar
early-time oscillations of bubble and spike velocities have been observed in [23], where compressibility is in-
volved; but are lacking in works focusing on incompressible flows (e.g. [11, 28]), indicating that this is an effect
of compressibility. Mikaelian [21] reported the oscillations of perturbation growth rate η̇, and ascribed it to
the ‘rippling’ behavior of the transmitted and reflected shocks; i.e. the two shocks’ curvature dies out after
they travel a distance of magnitude λ = D away from the interface, as is also noted in §II.

Within the decreasing phase of bubble growth rate, for the cases with pre-shock Weber numbers less than
477.46, the ‘bubble velocity’ (more precisely, the growth rate of the sinusoidal crests as bubbles have not yet
formed in these cases) eventually decreases below 0 due to the long-term restoring effect of surface tension. As
the Weber number is further increased, the curves remain positive for the entire simulated time and become
less sensitive to Weber number beyond We− = 1909.8, with an ultimate bubble velocity UBf around 0.04 at
the end of simulation. This indicates that within this range, the development of bubbles and spikes departs
from an oscillatory regime and approaches asymptotically zero velocity. The absolute values of spike velocities
|US | in the high Weber number cases are also decreasing after the oscillation period, with a final value |USf |
around 0.04, similar to that of the bubble velocity.

Based on potential flow methods, Sohn derived a nonlinear and incompressible model in [11] for the late-time
bubble development, which accounts for both viscosity and surface tension’s effects in RMI at the same time.
A similar model is also proposed in [29]. Specifically, when the two fluids are inviscid, the non-dimensional
expression of Sohn’s model [11] reads:

ÛB = cot t̂, (17)
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where

ÛB ≡
3

A+

√
(1 +A+)We+

2

UB
∆v

, t̂ ≡
√

2 (1 +A+)

3 +A+
t̃ =

√
2 (1 +A+)

3 +A+

kA+∆v√
We+

t (18)

We now seek to compare our measured bubble velocities with Sohn’s model [11]. For this purpose, we
normalize bubble velocity and time extracted from simulation cases with We− = 477.46, 1909.8, 3819.7 and
5729.6 according to the definitions of ÛB and t̂. The normalized curves are plotted in Figure 8 and compared
with Sohn’s model [11] in the form of (17).

FIG. 8: Comparison between simulated (solid lines) and theoretical (dashed line) bubble velocity developments in cases with

We− = 477.46, 1909.8, 3819.7 and 5729.6. Good agreements with Sohn’s theory are found at late time and large Weber numbers.

As is shown in the sketch, for the transitional Weber number case with We− = 477.46, Sohn’s model [11]
significantly overestimates the UB development within the simulated time range despite correctly capturing the
late-time receding trend. As for the cases with higher Weber numbers, where surface tension is weak enough
to give way to formation of bubbles and spikes, the normalized simulation results asymptotically converges to
Sohn’s cotangent model [11] as normalized time t̂ increases. Also, as the Weber number increases, convergence
to Sohn’s model [11] will occur at earlier normalized time t̂. This verifies that Sohn’s model [11] applies for
asymptotically high Weber numbers, since, for lower Weber numbers, surface tension still has some curbing
effects on the development of bubbles and spikes.

Within Sohn’s text [11], (17) is defined for asymptotically large We+ so that the singularity at t̂ = π
2 is not

reached for any physical time t. However, our simulations feature large but finite We+, so that for sufficiently
large physical time t, the t̂ = π

2 singularity may be reached in simulations. This may correspond with the
bubble velocity becoming negative and the interface thus exhibiting nascent oscillatory behavior, as speculated
by Sohn [11].

Therefore, we conclude that within the time range investigated, our results agree well with Sohn’s model [11]
in the bubble-development period of very high Weber number cases, besides the inability of Sohn’s model to
capture the early oscillatory behaviour of the bubble and spike velocities, due to compressible effects, observed
in this study. The development of spikes and bubbles at later time is still to be investigated, especially the
eventual breaking-off of spikes from the interface, as has been predicted by Sohn [11] and Matsuoka [30], and
recently observed in simulations by Corot et al. [25].

D. Transition to the nonlinear regime

In §IV B, we discussed the linear regime of interface evolution, which occurs for small Weber numbers
(strong surface tension), for which the interface perturbations oscillate with small amplitude. Then, in §IV C,
we discussed the late-time development of the highly nonlinear bubbles and spikes, which appear for large
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Weber numbers (small surface tension). However, for intermediate Weber numbers the surface tension may
curb but not prevent transition into a nonlinear evolution regime, which still exhibits oscillatory behavior.
The pre-shock initial perturbation amplitude η−0 also plays a significant role in the later transition process,
as larger η−0 values result in more rapid depositions of baroclinic vorticity at the interface, which causes it to
evolve from the initially sinusoidal shape into the complex late-time structures [31]. Therefore, both slope and
Weber number will determine the nonlinear transition.

Firstly, we seek a quantitative indicator of nonlinear transition. The earliest such signature is the departure
from the sinusoidal oscillation predicted by the linear theory. Therefore, as Weber number and slope increase,
nonlinear deviations in the shape of the η̃− t̃ curves are expected to be found first near the normalized peaks,
as the onset of nonlinearity should be relatively subtle and achieved most easily at maximum amplitudes.
Figures 9a,b,c show the peak of the first perturbation oscillation as a function of Weber number, each at a
different η−0 . In these figures, the axes are normalized according to the linear theory [5]. For η−0 = 0.02, lower
Weber numbers corresponding with clearly linear oscillations are difficult to attain due to instability of the
numerical solver for these parameters.

(a) (b)

(c) (d)

FIG. 9: Nonlinearity detection test results for A− = 9/11. (a): η−0 = 0.01; (b): η−0 = 0.015; (c): η−0 = 0.02; (d): comparisons of cases

with η−0 = 0.01, 0.015 and 0.02, at We+ values around 90

For each η−0 , corresponding with each of Figure 9a,b,c, the peaks of the perturbation amplitude curves are
joined according to ascending pre-shock Weber number We−. In each case, the peak perturbation amplitude
first increases, then decreases with increase We−. The time of peak amplitude, however, increases with We−

in all cases. We also note that this phenomenon becomes apparent at lower Weber numbers for the cases
η−0 = 0.015, 0.02 (Figure 9b,c) than at η−0 = 0.01 (9a). The phase shift that occurs with increasing We−

cannot be explained by the change of ∆ϕ = arctan 1/
√
We+ alone in (7); for example, the phase shift value
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predicted by this term for the η−0 = 0.01 cases with We+ between 132.13 and 264.26 is only 0.025, much
less than the measured value from Figure 9(a), which should be at least 0.097 as the normalized curve with
We+ = 264.26 is still reaching its first peak.

We also varied η−0 at constant We+ ' 90 to see the effect of amplitude alone (Figure 9(d)). Compared with
the nonlinear effects of increasing Weber number, the rightward phase shift caused by increasing η−0 occurs at
a global scale, as the normalized curves start to diverge at t̃ ≈ 0.65, while the peak values decrease slightly
as η−0 increases. Again, this rightward shift cannot be explained by the change of ∆ϕ = arctan 1/

√
We+ in

(7), as the term does not explicitly contain η−0 , and are almost the same for the three cases as the post-shock
Weber numbers We+ are nearly fixed. The initial amplitude of perturbation therefore has a material effect
on the critical Weber number required for nonlinear transition.

Therefore, nonlinear transition appears to manifest most clearly as a shift in (normalized) time of the peak of
the first oscillation. We quantify this directly as the relative error between the detected peak time (normalized,
denoted t̃m), and that predicted by the linear theory,

∆ ≡

∣∣∣∣∣ t̃m
π
2 − arctan 1√

We+

− 1

∣∣∣∣∣ . (19)

Note that this is defined according to the post-shock Weber number, We+. For properly linear evolution,
∆ = 0, corresponding to exact matching with the linear theory of [5], but this is not attained for any cases
in this study for even the smallest We−, η−0 , as discussed in §IV B. Of course, the transition to nonlinearity
is also gradual, so that a critical value ∆c for nonlinear transition can only be heuristically chosen. Here we
choose ∆c = 0.25, and plot in Figure 10a a phase diagram that identifies linear cases (∆ < ∆c, in yellow
squares) and transitional cases (∆ ≥ ∆c, in red pluses).

We now seek a simple predictive model for ∆ and ∆c, in order identify the presence of nonlinear effects due to
the effect of Weber number We+ and post-shock perturbation amplitude η+

0 , which appears nondimensionally
in the post-shock slope s+. We assume heuristically that nonlinear effects become apparent when the peak
perturbation amplitude-to-wavelength ratio reaches ∼ 0.1, or equivalently when smax ≡ kηmax ∼ 0.6. From
(5),(6) and for We+ � 1, this suggests that transition begins to occur for values of the parameter χ ' 0.6
where

χ ≡ (s+)α
√
We+ (20)

and α = 1 as a first estimate.

(a) (b)

FIG. 10: (a): Phase diagram showing simulation cases in linear growth-rate regime (purple) and transitional regime (blue). The
boundary between the two is selected as χ∗ = 0.055 (dashed line), while χ = 0.6 is also plotted in dotted line for comparison; (b):

Relationship between ∆ and χ with different s− setups. A common growth stage of ∆ is reached for different s− setups as χ∗ increases.

We plot χ = 0.6 in Figure 10(a) as a dotted line, but it does not correctly delineate linear and transitional
cases. Moreover, as shown in the inset of Figure 10(b), χ does not fully explain the variation in ∆. In that
plot, while ∆ increases with χ, the rate of increase is clearly dependent on η−0 (hence s− and therefore s+).
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There is therefore a further dependence of the transition to nonlinearity on s+, suggesting a better choice
of α in (20), which might be related to the local competition of surface tension and baroclinic vorticity on the
interface, and awaits a more detailed investigation. Figure 10(b) shows the resulting scaling with a modified
χ∗ where α = 1.8, which better collapses the data as the consistent growth trend of the η−0 = 0.02 cases
now aligns well with the last several cases of both η−0 = 0.01 and 0.015. Plotting the dashed line χ∗ = 0.055
on Figure 10(a) also more clearly delineates the linear and nonlinear cases. Based on this, we conclude that
χ∗ = 0.055 is the useful criterion for determining transition out of the linear to the nonlinear regime.

V. CONCLUSIONS

We have presented nonlinear, compressible numerical simulations of the Richtmyer-Meshkov instability with
surface tension. Using appropriate dimensional analysis, we find that the existing theoretical impulsive model
due to [5] predicts well the interfacial evolution of the shocked interface, with an appropriate modification to
accommodate Atwood number of either sign. At low incident Mach number, the numerical results differ from
the impulsive model due directly to boundary effects in our problem formulation, but thereby indicate some
sensitivity of the impulsive model to compressible effects at low Mach number and weak surface tension. Next,
within the nonlinear regime, we also show agreement with theoretical results in the asymptotic (large time)
bubble velocity in the limit of weak surface tension. Finally, we find an heuristic criterion for transition to
nonlinear evolution (that is, nonlinear deviation from the impulsive model) based on initial perturbation slope
and Weber number.

These results indicate the utility of this numerical model for problems of this kind, and constitute a further
validation of its surface tension model and implementation. This study is also a stepping stone towards the
mixed compressible-incompressible problem which may influence the early-time development of the shocked-
droplet or aerobreakup problem [32].

Appendix A: Numerical convergence

Since each fluid is inviscid, the smallest length scale in the bulk is set by numerical dissipation, so that
pointwise grid convergence is not expected. Nevertheless, we require that the primary characteristics of
the RMI growth, both with and without surface tension, be independent of grid resolution at our chosen
resolution of L = 9. Here, four groups of convergence tests are conducted in total for four different categories
of initial setups; namely, light-heavy (A− > 0) and heavy-light (A− < 0) density setups with and without
surface tension. Specifically, we set A− = ±9/11, while We− = +∞ or 159.15.

The raw outputs of the tests are provided in Figure 11, where the absolute values of post-shock amplitude
ratio |η/η−0 | is plotted against physical time t. Absolute values are taken to facilitate the comparison between
the results of light-heavy and heavy-light initial density setups, as in the latter case there will be a phase
reversal of the perturbation profile. The noise-signal ratio in the simulation output files is especially large
up to the end of the early-time shock-interface interaction period, which causes inaccuracies in the extracted
values of η; also, when relatively weak surface tension is introduced to the heavy-light density setup case,
noise is found in the neighborhood of the interface throughout the simulation, causing spurious high-frequency
oscillations on the entire curve. Despite these problems, we still observe good converging trend at resolution
level L = 9 for all four groups of convergence tests.

In order to better quantify the convergence behavior, we select the numerical integral of |η/η−0 | over the
time range of [0.05, 1.4] as the convergence metric, following [22]. When We− = 159.15, this metric shows a
monotonous convergence for the A− = −9/11 cases with an estimated relative error of 2.2% at Level 9, and
an oscillatory convergence for the A− = 9/11 ones with an uncertainty of 2.0% [33].

Appendix B: Determination of post-shock state

While in this study, the post-shock state is determined through numerical diagnostics, it is instructive to
compare them with theoretical predictions.

Mikaelian [21] proposes a set of equations for determination of the post-shock parameters for the RMI without
surface tension. Lying at the core of this system are two alternative transcendental equations (Equations A4
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(a) (b)

(c) (d)

FIG. 11: Convergence test results (Upper row: heavy-light density setup without (a) and with (b) surface tension; lower row: light-heavy
density setup without (c) and with (d) surface tension). Good numerical convergence is observed for all the inviscid test cases.

and A16 in the appendix of [21]) for which there are generally no analytical solutions:
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(B1)

The first equation is physically valid when its root satisfies ξ ≥ 1, which indicates a reflected shock; otherwise,
the second one will produce a root satisfying ξ ≤ 1, which indicates a reflected rarefaction instead. Once the
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value of ξ has been determined, the post-shock quantities ρ+
i ,∆v can be determined via the following equations,

ρ+
1

ρ−1
=


(γ + 1) + (γ − 1) p0pL
(γ − 1) + (γ + 1) p0pL

· (γ + 1)ξ + γ − 1
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· ξ
1
γ , ξ < 1
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2ξpL
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·

(
1− p0

ξpL

)2
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(B2)

It should be noted that equation sets (B1, B2) do not include effects of surface tension or the perturbed
interface profile investigated in our work. In particular, due to the perturbed interface profile, the transmitted
and reflected wavefronts both have corrugated shapes initially, which are similar to the sinusoidal shape of
the perturbed interface itself. These wavefront corrugations will oscillate and die out after the waves travel
a distance of several wavelengths away from the post-shock interface [34], as is the situation shown in Figure
1(b). This rippling behavior has been observed in the experiments of [35], and reproduced afterwards in many
simulation works (e.g. [21, 27, 36]).

We compare now the predictions of theory and numerical diagnostics for the cases presented in Figure 2.
The transcendental equation sets ((B1), (B2)) yields ξ = 1.8982 for the cases with A− = 9/11, and ξ = 0.4668
for those with A− = −9/11. These solutions agree with the categorization of reflected wave (Equation 8) by
Drake [18], which is based on the sign of pre-shock Atwood number A−.

The post-shock parameters are then derived using the solution ξ, and their comparisons with the values of
numerical diagnostics measured at around t = 0.4 are shown in the following Table I:

A− (Method) 9/11 (ND) 9/11 (ES) −9/11 (ND) −9/11 (ES)

ρ+
1 0.356 0.418 1.700 1.548

ρ+
2 3.084 3.593 0.169 0.168

A+ 0.793 0.792 -0.819 -0.804

∆v 2.030 2.333 2.231 2.109

r 0.66 0.688 0.0565 0.109

TABLE I: Comparison between post-shock values gained from numerical diagnostics (”ND”) and equation solving (”ES”).

Within each pre-shock Atwood number category, the results gained via numerical diagnostics and equation
solving for the same post-shock parameter are roughly on the same level of magnitude. Particularly good
agreements are found for ρ+

2 values in cases with A− = −9/11, and also A+ and r in those with A− = 9/11.
However, generally speaking, nontrivial discrepancies do exist between the results of the two solving methods.

The discrepancies are most likely caused by the equation system (B1) ’s not accounting for the influence
of the post-shock wavefronts’ ‘rippling’ behavior (see §II). In cases without surface tension, such behavior is
reported in [21] to cause the post-shock perturbation growth rate η̇ to reach an asymptotic value, for which no
simple analytic solution exists [21, 37], after going through a damped oscillation period, which also matches
the trend of our results in Figure 2.

The ascription of discrepancies above is further consolidated by the following observation. As is shown in
Figure 2, for the case with A− = 9/11, our state diagnostic case captures ρ+

1 = 0.411 and ρ+
2 = 3.590 at a very

early time t = 0.02 after the shock-interface interaction, which matches very well with the solution of [21]’s
equation sets (see column 3 of Table I). However, the two densities eventually settle down at the steady-state
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values, as discussed in §IV A.
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