Hyperbolicity and non-conservativity of a hydrodynamic model of swarming rigid bodies - Archive ouverte HAL
Article Dans Une Revue Quarterly of Applied Mathematics Année : 2024

Hyperbolicity and non-conservativity of a hydrodynamic model of swarming rigid bodies

Résumé

In this paper, we study a nonlinear system of first order partial differential equations describing the macroscopic behavior of an ensemble of interacting selfpropelled rigid bodies. Such system may be relevant for the modelling of bird flocks, fish schools or fleets of drones. We show that the system is hyperbolic and can be approximated by a conservative system through relaxation. We also derive viscous corrections to the model from the hydrodynamic limit of a kinetic model. This analysis prepares the future development of numerical approximations of this system.
Fichier principal
Vignette du fichier
SOHB_hyper_arxiv.pdf (457.6 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03833710 , version 1 (28-10-2022)

Identifiants

Citer

P Degond, A Frouvelle, S Merino-Aceituno, A Trescases. Hyperbolicity and non-conservativity of a hydrodynamic model of swarming rigid bodies. Quarterly of Applied Mathematics, 2024, 82 (1), pp.35-64. ⟨10.1090/qam/1651⟩. ⟨hal-03833710⟩
217 Consultations
138 Téléchargements

Altmetric

Partager

More