Coulomb-mediated antibunching of an electron pair surfing on sound - Archive ouverte HAL
Article Dans Une Revue Nature Nanotechnology Année : 2023

Coulomb-mediated antibunching of an electron pair surfing on sound

Tristan Meunier

Résumé

Electron flying qubits are envisioned as potential information link within a quantum computer, but also promise -- alike photonic approaches -- a self-standing quantum processing unit. In contrast to its photonic counterpart, electron-quantum-optics implementations are subject to Coulomb interaction, which provide a direct route to entangle the orbital or spin degree of freedom. However, the controlled interaction of flying electrons at the single particle level has not yet been established experimentally. Here we report antibunching of a pair of single electrons that is synchronously shuttled through a circuit of coupled quantum rails by means of a surface acoustic wave. The in-flight partitioning process exhibits a reciprocal gating effect which allows us to ascribe the observed repulsion predominantly to Coulomb interaction. Our single-shot experiment marks an important milestone on the route to realise a controlled-phase gate for in-flight quantum manipulations.

Dates et versions

hal-03833334 , version 1 (28-10-2022)

Identifiants

Citer

Junliang Wang, Hermann Edlbauer, Aymeric Richard, Shunsuke Ota, Wanki Park, et al.. Coulomb-mediated antibunching of an electron pair surfing on sound. Nature Nanotechnology, 2023, 18, pp.721-726. ⟨10.1038/s41565-023-01368-5⟩. ⟨hal-03833334⟩
93 Consultations
0 Téléchargements

Altmetric

Partager

More