Stationary Brownian motion in a 3/4-plane: Reduction to a Riemann-Hilbert problem via Fourier transforms - Archive ouverte HAL
Article Dans Une Revue Indagationes Mathematicae Année : 2022

Stationary Brownian motion in a 3/4-plane: Reduction to a Riemann-Hilbert problem via Fourier transforms

Résumé

The stationary reflected Brownian motion in a three-quarter plane has been rarely analyzed in the probabilistic literature, in comparison with the quarter plane analogue model. In this context, our main result is to prove that the stationary distribution can indeed be found by solving a boundary value problem of the same kind as the one encountered in the quarter plane, up to various dualities and symmetries. The main idea is to start from Fourier (and not Laplace) transforms, allowing to get a functional equation for a single function of two complex variables.
Fichier principal
Vignette du fichier
FFR-20222.pdf (479.84 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03832431 , version 1 (27-10-2022)
hal-03832431 , version 2 (12-11-2022)

Identifiants

Citer

Guy Fayolle, Sandro Franceschi, Kilian Raschel. Stationary Brownian motion in a 3/4-plane: Reduction to a Riemann-Hilbert problem via Fourier transforms. Indagationes Mathematicae, In press, ⟨10.1016/j.indag.2022.10.008⟩. ⟨hal-03832431v1⟩
158 Consultations
65 Téléchargements

Altmetric

Partager

More