Adaptive importance sampling based on fault tree analysis for piecewise deterministic Markov process
Résumé
Piecewise deterministic Markov processes (PDMPs) can be used to model complex dynamical industrial systems. The counterpart of this modeling capability is their simulation cost, which makes reliability assessment untractable with standard Monte Carlo methods. A significant variance reduction can be obtained with an adaptive importance sampling (AIS) method based on a cross-entropy (CE) procedure. The success of this method relies on the selection of a good family of approximations of the committor function of the PDMP. Different families are proposed. They are well adapted to high-dimensional industrial systems. Their forms are based on reliability concepts related to fault tree analysis: minimal path sets and minimal cut sets. The proposed method is discussed in detail and applied to academic systems and to a realistic system from the nuclear industry.
Fichier principal
ex_article.pdf (913.73 Ko)
Télécharger le fichier
SFP.png (212.98 Ko)
Télécharger le fichier
compareICv3.png (69.6 Ko)
Télécharger le fichier
diagram_SFP.png (53.24 Ko)
Télécharger le fichier
parallelSystem.png (17.07 Ko)
Télécharger le fichier
seriesSystem.png (11.38 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Origine | Fichiers produits par l'(les) auteur(s) |
---|