Modeling Protein Complexes and Molecular Assemblies Using Computational Methods - Archive ouverte HAL
Chapitre D'ouvrage Année : 2022

Modeling Protein Complexes and Molecular Assemblies Using Computational Methods

Elin Teppa
Jérémy Esque
Isabelle André

Résumé

Many biological molecules are assembled into supramolecular complexes that are necessary to perform functions in the cell. Better understanding and characterization of these molecular assemblies are thus essential to further elucidate molecular mechanisms and key protein-protein interactions that could be targeted to modulate the protein binding affinity or develop new binders. Experimental access to structural information on these supramolecular assemblies is often hampered by the size of these systems that make their recombinant production and characterization rather difficult. Computational methods combining both structural data, molecular modeling techniques, and sequence coevolution information can thus offer a good alternative to gain access to the structural organization of protein complexes and assemblies. Herein, we present some computational methods to predict structural models of the protein partners, to search for interacting regions using coevolution information, and to build molecular assemblies. The approach is exemplified using a case study to model the succinate-quinone oxidoreductase heterocomplex.
Fichier principal
Vignette du fichier
Launay_Methods_in_Mol_Bio_2022.pdf (976.81 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03829520 , version 1 (24-01-2023)

Identifiants

Citer

Romain Launay, Elin Teppa, Jérémy Esque, Isabelle André. Modeling Protein Complexes and Molecular Assemblies Using Computational Methods. Kumar Selvarajoo. Computational Biology and Machine Learning for Metabolic Engineering and Synthetic Biology, 2553, Springer, pp.57-77, 2022, Methods in Molecular Biology, 978-1-0716-2616-0. ⟨10.1007/978-1-0716-2617-7_4⟩. ⟨hal-03829520⟩
51 Consultations
68 Téléchargements

Altmetric

Partager

More