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Modeling Protein Complexes and Molecular Assemblies
Using Computational Methods

Romain Launay, Elin Teppa, Jérémy Esque, and Isabelle André

Abstract

Many biological molecules are assembled into supramolecular complexes that are necessary to perform
functions in the cell. Better understanding and characterization of these molecular assemblies are thus
essential to further elucidate molecular mechanisms and key protein-protein interactions that could be
targeted to modulate the protein binding affinity or develop new binders. Experimental access to structural
information on these supramolecular assemblies is often hampered by the size of these systems that make
their recombinant production and characterization rather difficult. Computational methods combining
both structural data, molecular modeling techniques, and sequence coevolution information can thus offer
a good alternative to gain access to the structural organization of protein complexes and assemblies. Herein,
we present some computational methods to predict structural models of the protein partners, to search for
interacting regions using coevolution information, and to build molecular assemblies. The approach is
exemplified using a case study to model the succinate-quinone oxidoreductase heterocomplex.

Key words Protein-protein interaction, PPI, Molecular assembly, Protein structure prediction,
Protein-protein docking, Sequence coevolution

1 Introduction

Protein-Protein Interactions (PPIs) play an important role in the
functioning of living cells, including cell-to-cell interactions and
metabolic and developmental control [1, 2]. Most cellular
functions are mediated by the assembly of proteins as more than
80% of the proteins operate in vivo in the form of homo- or hetero-
oligomers [3] whose constituents assemble /disassemble dynami-
cally [4]. Interaction between the proteins can be permanent or
transient. While permanent interactions will form a stable protein
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complex, the transient interactions are rather involved in signaling
and regulation pathways or substrate /metabolite channeling [2, 5,
6]. Better understanding these molecular assemblies and PPIs is
thus of major importance to further elucidate molecular mechan-
isms of cellular processes, engineer synthetic metabolic pathways
for synthetic biology, or identify drug targets for biomedical
applications [5].

PPIs can be investigated at different levels. In vivo, yeast
two-hybrid (Y2H, Y3H) techniques enable to detect protein
interactions, while in vitro, a variety of methods can be used such
as tandem affinity purification, affinity chromatography, coimmu-
noprecipitation, protein arrays, protein fragment complementa-
tion, phage display, and mass spectrometry [6-8] among others.
At the structural level, investigation of PPIs has largely benefited
from the growing number of protein-protein complexes solved in
recent years using different biophysical techniques, such as X-ray
crystallography, nuclear magnetic resonance spectroscopy, and
cryo-electron microscopy [7]. To complete this arsenal of
approaches, in silico molecular modeling based on a combination
of template-based methods and docking approaches that can inte-
grate experimental restraints (i.e., coevolution information) has
also emerged as a powerful technique to investigate protein assem-
blies, in particular when experimental data are lacking [3, 9].

In this chapter, we provide a brief introduction to computa-
tional methods that allow to predict structural models of proteins,
to search for interacting regions using inter-protein coevolution
information, and to model and analyze molecular assemblies. The
use of some of these methods and tools is illustrated for the model-
ing of the succinate-quinone oxidoreductase heterocomplex as a
case study.

2 Methods for Building a 3D Model of a Protein

Predicting the three-dimensional structure of a protein based on its
sequence is still an open problem in research. Protein structure
prediction methods on the basis of protein sequences are based
on two principles: (i) protein structure is more conserved across
evolution than protein sequence, and (ii) there is a finite and
relatively small (less than 10,000) number of unique protein folds
in Nature [10].

Structure prediction methods are broadly classified into two
categories: (a) template-based modeling (which uses one or several
known structure(s) as template(s)) and (b) template-free modeling
(which predicts a protein structure without using a significant
template). There are also hybrid approaches that combine the two
kinds of methods.



2.1 Template-Based
Methods

New modeling methods or corrections to existing methods
continually emerge. There are several ways to keep up with the
best existing methods, identify the progress over time, and recog-
nize where future efforts may be most productively focused. One
way is to be aware of CASP results (the Critical Assessment of
Protein Structure Prediction, www.predictioncenter.org) con-
ducted every 2 years since 1994. Another way is to check the
Continuous Automated Model EvaluatiOn (CAMEO; www.
cameo3d.org) project that provides weekly follow-ups for three
different aspects of the prediction by web servers: (a) homology
modeling, (b) model quality estimation, and (c) contact prediction.

In recent years, machine learning approaches have contributed
tremendously to improve the accuracy of structural prediction,
even when no similar structure is known [11]. Particularly in the
recent CASP14, the AlphaFold2 method [11] outperformed most
methods by predicting structures with high accuracy.

The methods referred to as template-based modeling include
threading techniques and comparative modeling. Template-based
modeling predicts the 3D structure of a query protein through the
sequence alignment between the query and one or several proteins
with known structures. When query and template sequences have
been derived from a common ancestor, the method is referred to as
homology modeling. However, proteins from different evolution-
ary origins may still adopt a similar structure; in this case, threading
methods are used to identify structural templates.

Generally, the process of comparative modeling involves four
steps: (a) template identification, (b) sequence alignment,
(c) model building, and (d) model refinement and validation. If
the model is not satisfactory, some or all of the steps can be
repeated. As such, the success of homology modeling depends on
the ability to identity the closely homologous templates based on
sequence identity and to generate an accurate query-template
alignment. The goal of the alignment is to map the
one-dimensional target sequence onto corresponding three-
dimensional positions of the template structure correctly, ideally
with only substitutions and small insertions/deletions. Broadly
speaking, comparative modeling produces a good result if the
query-template alignment has a global sequence identity Z30%.
As the sequence identity decreases, a correct template identification
is more difficult and prone to misaligned regions. When query-
template sequence identity is between 20% and 30%, they fall in the
twilight zone; the evolutionary relatedness of proteins becomes
uncertain [12, 13]. In this case, the threading technique may help
to identify remote homology, leaving the ab initio method as the
last alternative for protein structure prediction.



2.2 Template-Free or
Ab Initio Methods

2.3 Servers for
Protein Structure
Prediction and Related
Databases

2.3.1 MODELLER via
ModWeb and ModBase

For query proteins that have no structurally related protein in the
PDB library, the structure must be built from scratch. This proce-
dure is called ab initio modeling, de novo modeling, or template-
free modeling. An ab initio method conducts an exhaustive search
to identify the minimum energy conformation through optimiza-
tion algorithms, such as Monte Carlo [14] or molecular dynamics
[15], using knowledge-based scoring or physics-based energy func-
tions. This procedure generates several putative conformations
(also called decoys), and final models are selected from them. A
successful ab initio modeling depends on three factors:

(a) An accurate energy function that scores the native structure of
a protein as being the most thermodynamically stable state,
compared to all possible decoy structures

(b) An efficient search method that can quickly identify the
low-energy states through conformational search

(c) A strategy that can select near-native models from a pool of
decoy structures

Hereafter are presented some servers and databases used for protein
structure prediction based on various strategies and using, in some
cases, sequence coevolution information and artificial intelligence-
derived methods.

MODELLER is one of the most widespread comparative modeling
methods for prediction of protein structures [16]. Models are
obtained by satistying spatial restraints derived from the query-
template alignment.

These restraints include:

(a) Ca-Ca and backbone N-O distances and dihedral angles
restraints

(b) Stereochemical restraints from the CHARMM-22 force field

(c) Statistical preferences for dihedral angles and non-bonded
inter-atomic distances derived from representative sets of
known protein structures

Optionally, it is possible to add manually additional restraints.
MODELLER is available free of charge only to academic nonprofit
institutions at https: //salilab.org/modeller/.

Several servers based on MODELLER have been developed
such as ModWeb or ModBase.

ModWeb server (https://modbase.compbio.ucsf.edu/mod
web /) offers the possibility to use MODELLER online.

ModBase (http://salilab.org/modbase) is a database contain-
ing fold assignments, sequence-structure alignments, models, and
model assessments for all sequences related to a known structure
[17]. The models are derived by ModPipe, an automated modeling



2.3.2 PHYRE2

2.3.3 I-TASSER

pipeline relying on the programs PSI-BLAST [18] and MODEL-
LER. ModBase also includes binding site prediction for small
ligands and a set of predicted interactions between pairs of modeled
sequences from the same genome that are predicted to interact with
each other.

PHYRE2 (http://www.sbg.bio.ic.ac.uk/phyre2) is designed to
predict a protein three-dimensional structure from a protein
sequence [19]. The server uses a powerful strategy to detect remote
homology combining PSI-BLAST alignment with hidden Markov
models (HMM) via HHsearch for template detection. The primary
algorithmic strategy is composed of four steps. In the first step,
homologous sequences of the query are searched using HHblits.
The resulting alignment is used to predict secondary structure. In
the second step, HHsearch is performed against a database of
HMMs of protein of known structures. The top-scored alignments
are used to construct the protein model backbone. In the third
step, the loops are modeled, and in the last step, the side chains are
added to generate the final model. When the intensive mode is
used, a step is added to use an ab initio folding simulation called
Poing? to model regions of the query protein with no detectable
homology to known structures.

I-TASSER (Iterative Threading ASSEmbly Refinement) is a hierar-
chical approach to protein structure and function predictions from
their amino acid sequences [20]. I-TASSER is accessible via a web
server (https://zhanglab.dcmb.med.umich.edu/I-TASSER) and a
stand-alone package. Starting from an amino acid sequence, the
algorithm tries to retrieve protein templates of similar fold from the
Protein Data Bank (PDB: https://www.rcsb.org) using a meta-
threading approach called LOMETS (https://zhanggroup.org/
LOMETS/). In the next step, the continuous fragments taken
from the PDB templates are reassembled into full-length models.
For cases where no appropriate template is identified, I-TASSER
builds the whole structure by ab initio modeling. SPICKER iden-
tifies the low free-energy states through clustering the simulation
decoys (https: //zhanggroup.org/SPICKER /). In the third step, a
second iteration of the fragment assembly simulation is performed
again to remove the steric clash and refine the global topology of
the cluster centroids. The decoys generated are then clustered, and
the lowest energy structures are selected followed by an optimiza-
tion of the hydrogen-bonding network. The final model is used to
predict the protein biological function by matching the model with
other known proteins using the enzyme classification
(EC number), gene ontology vocabulary, and ligand binding
sites. More recently, an I-TASSER-derived method called D-I-
TASSER has been developed for distance-guided protein structure
prediction  (https://zhanggroup.org//D-1I-TASSER/).  This



2.3.4 trRosetta

2.3.5 AlphaFold2 Method
and Structural Database

method integrates inter-residue contacts predicted by deep neural
network and has been reported to significantly enhance accuracy of
models compared to I-TASSER.

trRosetta (transform-restrained Rosetta) is an algorithm for protein
structure prediction using a deep neural network to predict the
inter-residue distances [9]. The algorithm is available in a stand-
alone version and a web server (https://yanglab.nankai.edu.cn/
trRosetta/). The input is the amino acid sequence or a multiple
sequence alignment of the query protein. A deep neural network is
applied to predict the inter-residue distances and orientation dis-
tributions between residues. Some of the features used in the con-
volutional layers of the networks include amino acid frequencies,
entropies, and coevolutionary couplings.

Predicted inter-residue distances and orientations are used as
restraints to guide the Rosetta method to build three-dimensional
structure models based on direct energy minimization.

Recently, the algorithm was modified to include the option to
use templates. It is recommended to run the algorithm including
homologous templates, which are used to add restraints to Rosetta.

Given a query sequence, AlphaFold2 [11] searches for related
sequences in three databases: UbiRef90, BFD, and MGnify.
Then, potential templates are searched using HHsearch against
the PDB70 database [21]. The input sequence, multiple sequence
alignment, and template hits are used as inputs for the deep
learning-based method that produces a variety of predictions
including distances, torsions, and atom coordinates. Then, the
predicted 3D model is relaxed using restrained gradient descent
with the Amber ff99SB force field [22] integrated in
OpenMM [23].

AlphaFold2 produces a per-residue confidence metric called
the predicted local distance difference test (pLDDT) on a scale
from 0 to 100, to estimate how well the prediction agrees with an
experimental structure considering the Ca. A pLDDT >90 is con-
sidered as a highly accurate prediction; in addition to a good
backbone prediction, the side chains are often correctly oriented
(x1 rotamers are 80% correct). Regions with pLDDT between
70 and 90 indicate a generally good backbone prediction. Regions
with pLDDT between 50 and 70 are low confidence and should be
treated with caution. Finally, regions with pLDDT <50 are proba-
bly disordered.

In CASP14, AlphaFold2 was the top-ranked protein structure
prediction method, producing predictions with high accuracy [24].

The source code of AlphaFold2 is available on GitHub
(https: //github.com/deepmind /alphafold). It is also possible to
use AlphaFold2 via the Google ColabFold notebooks [25], a free



platform for protein folding that does not require any installation
or expensive hardware. Several ColabFold notebooks are available
on GitHub (https: //github.com/sokrypton/ColabFold).

DeepMind and EMBL’s European Bioinformatics Institute
(EMBL-EBI) created the AlphaFold database (https://alphafold.
ebi.ac.uk) to provide open access to protein structure predictions
generated by the AlphaFold2 method. At the moment, the predic-
tions cover almost the entire human proteome [26] and the
proteomes of several other key organisms such as E. colz, fruit fly,
mouse, and zebrafish, among others, totaling over 350,000 protein
structures. The database provides three outputs from AlphaFold2:
the three-dimensional coordinates, the per-residue confidence met-
ric pLDDT, and the Predicted Aligned Error, which is necessary to
assess confidence in the domain packing and large-scale topology of
the protein.

3 Protein-Protein Interaction Prediction Using Coevolution

We refer to molecular coevolution when a change in one locus
affects the selection pressure at another locus, and this change is
reciprocal [27, 28]. In other words, when a mutation occurs in a
particular position, another mutation may occur to compensate for
the change or restore the protein function. As coevolving residues
tend to be close in the tridimensional structure, coevolution has
been successfully applied to predict intra- and inter-protein residue
contacts [29-32]. When coevolution methods were applied at
whole-proteome scale combined with structure modeling to pre-
dict protein-protein interactions, the accuracy of interaction pre-
diction is higher than the proteome-wide two-hybrid and mass
spectrometry screens [33]. A large panel of methods exists to
predict molecular coevolution; all of them use a multiple sequence
alignment (MSA) as input. In general, a large number of diverse
sequences are required to obtain reliable results. To predict inter-
protein coevolution between two proteins A and B, the real input of
the coevolution algorithm is the concatenated alignment; protein A
and protein B for each organism must be properly paired (Fig. 1).
Building the concatenated alignment is not straightforward,
because each row of the MSA should contain a pair of interacting
proteins out of two protein families. That means that it is desirable
to concatenate orthologous proteins, as they are likely to perform
an equivalent function, rather than other types of homologs.

The I-COMS web server (http://i-coms.leloir.org.ar) allows
computing inter-protein contact prediction using four different
covariation methods [34]. The server gives the option to provide
the concatenated alignment or build it automatically. The server
includes four covariation methods: corrected mutual information,
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Fig. 1 Inter-protein coevolution. In the concatenated alignment between two interacting proteins A and B, two
positions coevolve (indicated with an arrow) to maintain favorable interactions between physically interacting
amino acid residues (indicated as *) in the three-dimensional structure

mfDCA, PSICOV, and CCMpred. Intra- and inter-protein results
are provided in an interactive visualization allowing the comparison
between methods as well as the concordance between results.
Covariation positions can be calculated for up to five proteins.

4 Protein Assembly Prediction and Analysis

4.1 Protein-Protein
Docking: Principles
and Methods

When the structural information of different protein partners is
available through experimental data or modeling, the docking
approach is used as a standard method to predict the potential
interactions. The aim of docking is to find the best matched 3D
structure of the protein complex among several protein models. To
do so, a fast search algorithm is used to sample all possible spatial
conformations, and a scoring function is needed to rank the solu-
tions. Due to the large number of possibilities for the position and
angle of protein residues, spatial search algorithms in protein-
protein docking can be divided into three main categories:
(a) exhaustive global search including fast Fourier transform
(FFT)-based search implemented [35, 36] and spherical Fourier
transform-based search [37-39], (b) randomized search using
Monte Carlo [40, 41], and (c) local shape feature matching includ-
ing geometric hashing [40]. It is important to notice that all
FFT-based approaches perform rigid-body docking because the
related grid cannot be updated, unlike randomized search
algorithms.

Protein-protein docking methods typically generate thousands
of potential solutions for a particular complex. To discriminate
near-native solutions, the development of a scoring function is
needed and is still challenging. These scoring functions can be
divided into several categories, sometimes combined: (a) physics-
based scoring function capturing the determinants related to the
stability of protein-protein complexes, e.g., shape complementary,
van der Waals, electrostatics, and desolvation potential [41-47],



(b) knowledge-based functions taking advantage of the informa-
tion from available structures [48-51], (¢) scoring functions com-
bining physical terms with knowledge-based terms [52-55],
(d) evolutionary scoring function based on the protein sequence
evolution [56, 57], and (e) consensus-based scoring functions
seeking to identify solutions with high occurrence features, inde-
pendently of any physics-based or evolutionary evaluation, such as
conservation of interface contacts [58-62]. Along the same line as
the CASP contest for protein structure prediction, the CAPRI
competition allows a blind assessment of the most recent methods,
offering an updated view of progress in the field [63—-65].

4.2 ZDOCK ZDOCK s a protein-protein docking method available through an
online web server (https://zdock.umassmed.edu/) [66]. It uses
the fast Fourier transform algorithm to enable an efficient docking
search. Itis a user-friendly server to predict complexes that proceed
in three steps. The first step is to provide two input structures
(by PDB code or PDB file) and choose the ZDOCK version. The
second step is the selection of blocking or contacting residues for
each protein submitted. The last step is the result analysis and
visualization, including the top ten docking models.

4.3 InterEvDock3 InterEvDock3 (https://bioserv.rpbs.univ-paris-diderot.fr/
services/InterEvDock3 /) is a server designed for predicting pro-
tein pairwise assemblies, based on sequence or on structure, and
possibly combined with coevolution data [67]. Three protocols are
implemented to use at best the available information.

The first method is template-based docking; it uses sequences
to search the protein assembly with already known structures.
Template-based docking protocols need two or more sequences
and a protocol search among a list of interacting proteins if the
structure of protein homologs is available in complex with partners,
based on HHsearch. The structural assembly is built with threading
for the main parts, and the missing parts are built with the
DaReUS-Loop program [68].

The two other methods perform free docking using the
FRODOCK software. Then, generated models are ranked accord-
ing to the coevolution information given by the user or computed
by the server.

5 Case Study: Modeling the Succinate-Quinone Oxidoreductase Heterocomplex

We propose to build a structural model of the supramolecular
complex succinate-quinone oxidoreductase (SQR). SQR is a key
enzyme in the Krebs cycle, oxidizing succinate to fumarate and
reducing quinone to quinol, acting as a link between the Krebs
cycle and the respiratory chain. Escherichin coli SQR has four sub-
units, two hydrophilic subunits exposed to the cytoplasm (SdhA



5.1 Building a 3D
Model Using
AlphaFold2: SQR
Subunits, SdhA,
and SdhC

and SdhB), which interact with two hydrophobic membrane-
intrinsic subunits (SdhC and SdhD) [69]. Interestingly, SdhA and
SdhB have already been shown to coevolve together. This informa-
tion enabled to predict the proper interacting interface [29-32]
compared to the crystallographic protein structure of E.coli SQR
[70, 71] (PDB code: INEK, 2WDQ).

For pedagogical purposes, we provide step-by-step instructions
to generate the structural models of the heterotetramer subunits
and their assembly (Fig. 2). First, we shall build a structural model
for all subunits (SdhA, SdhB, SdhC, and SdhD) using either the
AlphaFold2 method without template or I-TASSER without using
close templates. This choice will mimic cases where no crystallo-
graphic information is available. Second, we will use inter-protein
coevolution detection to predict residue contacts between the sub-
units. The dataset for coevolution comes from the available data
reported in reference [30] and is provided in supplementary infor-
mation (SI1). Third, the predicted residue contacts will be used to
guide the protein-protein docking. Fourth, a docking was carried
out between the dimers SdhA-SdhB and SdhC-SdhD without

using coevolution information.

To avoid setting up AlphaFold2 on your local computer, we will use
an online version to build the 3D models of SdhA and SdhC. The
following steps are the same for SdhA (UniProt ID: POAC4) and
SdhC (UniProt ID P69054):

1. Download the amino acid sequence of the target in FASTA
format from UniProt.

2. Go to ColabFold repository (https: //github.com /sokrypton/
ColabFold).

3. Choose the Notebook AlphaFold2 (from DeepMind).

4. Execute the first two cells by clicking the play button. It will
install the required programs in the cloud, and not on your
computer.

5. Wait until the task is completed, a green tick mark will appear at
the left of the play button. You can also visualize the progres-
sion of each task in the progress bar (Fig. 3a).

6. Paste the protein sequence without the FASTA header in the
text box.

7. Select Runtime -> Run After in the toolbar at top of screen.
8. Unzip the file downloaded automatically with the results.
9. It’s done! Now, we are ready to analyze the results.
To make sure that you can reproduce the result, it is recom-
mended to save a copy of the notebook on your computer. You can

find several options to save the notebook in the File menu in the
top bar.
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Fig. 2 Strategy to model the heterocomplex succinate-quinone oxidoreductase (SQR). The complex model was
built as follows. First, we shall build a structural model for all subunits (SdhA, SdhB, SdhC, and SdhD) using
either the AlphaFold2 method without template or I-TASSER without using close templates. Second, we will
use inter-protein coevolution detection to predict residue contacts between the subunits. The dataset for
coevolution comes from the available data reported in reference [32] and is provided in supplementary
information (SI1). The inter-protein contact prediction was carried out using I-COMS. Third, the two subunits
were docked using InterEvDock3 with coevolution information, and in the fourth step a docking was carried
out between the dimers using ZDOCK without coevolution information

To analyze the results, we will visualize two parameters: (a) the
number of sequences and gaps for contact prediction (Fig. 3b) and
(b) the AlphaFold per-residue confidence score (pLDDT) that is
found in the B-factor fields of the coordinate files (Fig. 3c). Both
sequence information and pLDDT score per residue provided on
average a good confidence about the quality of 3D models
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Fig. 3 Building a 3D model of SdhC from E. coli using AlphaFold2. Following the ColabFold notebook running
process (a). Coverage of the multiple sequence alignment used by AlphaFold2 (b). Structural model colored by
pLDDT (c). The AlphaFold2 method predicts a bundle of transmembrane helices and a disordered/coil region in
N-term. In this latter, a low confidence is determined due to the lack of information in this region (N-term

region in B)

5.2 Building a 3D
Model Using I-TASSER:
SQR Subunits, SdhB,
and SdhD

(SdhA and SdhC). To confirm this result, both 3D models were
compared with the corresponding X-ray structures (PDB code:
INEK chain A and C). Using TM-align server (https://
zhanggroup.org/TM-align/), structural alignments between
models and solved structures gave RMSD values of 0.73 A and
1.33 A for SdhA and SdhC, respectively. It is worth noting that
these RMSD values correspond to aligned residues; thus these
latter can increase when considering the whole structure as the
loop /coil /disordered regions highlighted in Fig. 4.

To avoid installation and set up programs on your computer, we
will use the widely used I-TASSER webserver to build the 3D
models of SdhB and SdhD.

1. Register yourself (https://zhanggroup.org/I-TASSER /regis
tration.html).

2. Download the amino acid sequence of the target in FASTA
format from UniProt (UniProt ID: P07014 and POAC44 for
SdhB and SdhD, respectively).

3. Go to I-TASSER webserver (https://zhanggroup.org/I-TASSER /).

4. Paste the protein sequence in FASTA format in the text box
(Fig. 5a).

5. Type 60% to exclude homologous templates in the Option II
section.

6. Identify you with email and password.
7. Click on the “Run I-TASSER” box.

8. Wait for results sent by email.



Fig. 4 Structural comparison between X-ray structure (1nek) and 3D models from AlphaFold2. SdhA (a) and
SdhC (b) structures are shown in cartoon and colored as in Fig. 2. X-ray structures are displayed in transparent
gray cartoon representation. Red squares highlight the main regions where Alphafold2 differs from the X-ray
structure

5.3 Modeling SdhA-
SdhB and SdhC-SdhD
Using Protein-Protein
Docking and
Coevolution
Information

To analyze the results, we will visualize two parameters: (a) the
threading templates used by I-TASSER and the alignment quality
against the target sequence (Norm Z-score) (Fig. 5b) and (b) the
I-TASSER score (c-score) that gives the confidence of each model
based on the significance of threading template alignments and the
convergence parameters of the structure assembly simulations
(Fig. 5¢). This score is comprised between —5 and 2, with higher
values (close to 2) indicating a higher confidence on the 3D
model and vice-versa. Both templates and C-score (1.23 and 0.53
for SdhB and SdhD, respectively) provided good confidence about
the quality of 3D models. Indeed, the best C-score was obtained
using the templates chain B and C from 1YQ3 for SdhB and SdhD,
respectively. Even if the sequences from 1YQ3 share ~50% and 20%
of'identity with SdhB and SdhD, respectively, the selected template
corresponds to the same functional complex from another organ-
ism (Gallus gallus). To confirm this result, both 3D models were
compared with the corresponding X-ray structures (PDB code:
INEK chain B and D). Using the TM-align server, structural
alignments between models and solved structures gave RMSD
values of 2.01 A and 2.19 A for SdhB and SdhD, respectively.

Among the six possible protein pairs composing the heterotetra-
mer, we focused on the prediction of SdhA-SdhB and SdhC-SdhD,
the first pair corresponding to the cytosolic subunits and the second
one to the membrane domains. We will use inter-protein coevolu-
tion to predict contacts between these two subunit pairs using
I[-COMS server. The input will be the alignments taken from a
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Fig. 5 Building a 3D model of SdhD from E. coli using I-TASSER. Following the submission process
described between steps 4 and 7 (a). Top ten of threading templates (b). Best 3D model out of the top five

final models (c)

previously published and publicly available dataset and provided in
supplementary information (SI1).

1.
2.

o N O U B W

Download the alignments from SI1.
Go to the I-COMS server (http://i-coms.leloir.org.ar/index.
php).

. Select the option “Upload your own alignments.”

. Optionally, you can describe the uploaded dataset.

. Upload the two alignments using the “Browse. ..” button.
. Click on “Upload and submit.”

. Choose the method for coevolution: plmDCA.

. Optionally you can indicate the job description and your email

address.

Results include information about the alignment used, such as

the number of sequences and clusters. If the number of clusters is
low (<400), it means that there is little diversity in the MSA and the
results should be interpreted with caution. Results are shown in a
circos representation of the covariation scores of each of the
selected methods, and protein pairs are displayed (Fig. 6).
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Fig. 6 Docking of subunits using coevolution information. Top five inter-protein coevolution results from
I-COMS server. The inner circle represents the sequence positions in boxes colored according to the sequence
they belong to (SdhA or SdhB). The correlated mutation scores are represented as lines between positions in
the center of the circle. Given as example, the coevolving positions K38 and R52 from SdhA and SdhB,
respectively, are indicated (a). Top five inter-protein coevolving positions are shown in the modeled subunits;
the Car of coevolving positions are shown in sphere representation (b). Analogous results are given for
subunits SdhC and SdhD, the top five coevolution results (c) and the same coevolving pairs mapped on the
models (d)

To visualize the inter-protein results:

1. Choose the pair of proteins (SdhA vs SdhB) or (SdhC vs SdhD).
2. Select the method.

3. Click on “Draw Circos.”



5.4 Modeling the
Succinate-Quinone
Oxidoreductase
Heterocomplex Using
Protein-Protein
Docking and
Restraints

4. Click on “Inter-protein” links.
5. You can select the number of edges to visualize.

6. Download covariation raw data, it will be used in the next steps.

Protein docking of SdhA-SdhB and SdhC-SdhD will be per-
formed using InterEvdock3 server and residue contact predictions
from I-COMS as described previously. The inputs will be the pdb
files of the two partners to dock and a list of residue pair contacts.

7. Go to InterEvdock3 server (https://mobyle.rpbs.univ-paris-
diderot.fr/cgi-bin/portal.py#forms::InterEvDock3).

8. Upload Partner A and Click on “Browse...” to browse and
select pdb file.

9. Upload Partner B and Click on “Browse...” to browse and

select pdb file.
10. Click on “Advanced Options.”
11. Go to “Use of co-evolution or deep-learning maps.”

12. Upload the coevolution map (Top 100) from I-COMS given
in SI2.

13. Select “Yes” in “Minimize the output models using
gromacs.”

14. Click on run.

InterEvdock3 web portal enables to follow the job progress at
any time without any specific link. The https link associated with the
job can be stored locally for caution.

Main InterEvdock3 output provides two kinds of rankings
limited to the top ten poses: (a) based on the number of structural
contacts matching the predicted coevolution pairs and (b) based on
the scoring function related to the sum of the best predicted
coevolution pairs.

In this study, the best docking poses for both heterodimers are
selected from the second type of ranking, which leads to favor the
most probable pairs related to their coevolution score. The result-
ing models of the heterodimers are provided in SI3.

As there is not enough information when merging concatenated
MSA from SdhA, SdhB, SdhC, and SdhD, coevolution cannot be
used to predict residue contacts. Therefore, the docking between
the predicted partners will be done using “classical” docking. Free
docking and docking with restraints will be performed using
ZDOCK server. To avoid clashes and improve docking prediction,
N-term disordered regions for SdhC and SdhD are removed,
corresponding to the first 13 residues and the 10 residues,
respectively.



1. Go to https://zdock.umassmed.edu/.

2. Choose “PDB file” in the scrolling list close to “Input Protein
1” keyword.

3. Click on “Browse ...” to select PDB file corresponding to

SdhA-SdhB.
4. Repeat steps 2 and 3 for Input Protein 2.
5. Fill up the form “Enter your email.”

6. Optionally, for free docking, check the box close to Skip residue
selection.

7. Click on “Submit” button.

8. If Skip residue selection was not checked, select interactively the
residues belonging to the binding site for guiding docking.

9. Click on “Submit” button.
10. Wait for results sent by email.
11. Download top ten predictions.

12. Select the first docking poses.

This particular case seems to be difficult for good docking
prediction. Indeed, free docking does not provide a good solution
compared to the X-ray structure. To get a correct assembly, a list of
17 and 19 residues from SdhB and SdhC-SdhD (given in SI12) had
to be provided to guide the docking. The binding residues at the
interface can be selected on distance threshold criteria, 3.2 A on
heavy atoms from X-ray structure in this work. Having this kind of
information helps to have better predictions as shown in Fig. 7.
Superposition of the modeled heterotetramer onto the X-ray struc-
ture (PDB code: 1NEK) showed an RMSD of ~0.73 A based on
TMe-align server, indicating a very good fit. The coordinate file of
the final model is provided in SI3.

6 Conclusions

Overall, this study shows that protein complex prediction is not a
trivial question. The first crucial work is to obtain the structure of
each protein partner. According to the available data, different
approaches can be applied with a new methodology outperforming
the others, called Alphafold2. Part of the success in the assembly
construction will first depend on the quality of the 3D structural
model of each partner. Therefore, assessment such as pLDDT is an
important step at this stage. Then, protein-protein interactions can
be predicted with reasonable confidence when diverse information,
such as coevolution prediction or experimental results, is available
to guide toward the most probable assembly. In this study, both
cases are exemplified. Two heterodimers were quite well predicted



Fig. 7 Superposition of the modeled SDQ heterotetramer onto the reference
structure. Each modeled subunits SdhA, SdhB, SdhC, and SdhD is shown in
cartoon representation and is colored according to the corresponding label. The
heterotetramer is obtained from the docking of the two main units SdhA-SdhB
and SdhC-SdhD. The reference corresponds to the X-ray structure (PDB code:
1NEK), which is shown in white cartoon representation for clarity

using coevolution information thanks to the diversity of the data.
However, construction of the heterotetramer assembly was quite
challenging because the interactions with the membrane are not
taken into account in the docking procedure. To circumvent this
limitation, a set of amino acid residues from the protein interface
identified from experimental data was used to guide the construc-
tion of the heterotetramer assembly.
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