Kinetic and Products Study of the Atmospheric Degradation of trans-2-Hexenal with Cl Atoms - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Physical Chemistry A Année : 2022

Kinetic and Products Study of the Atmospheric Degradation of trans-2-Hexenal with Cl Atoms

Résumé

The gas-phase reaction between trans-2-hexenal (T2H) and chlorine atoms (Cl) was studied using three complementary experimental setups at atmospheric pressure and room temperature. In this work, we studied the rate constant for the titled oxidation reaction as well as the formation of the gas-phase products and secondary organic aerosols (SOAs). The rate constant of the T2H + Cl reaction was determined using the relative method in a simulation chamber using proton-transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) to monitor the loss of T2H and the reference compound. An average reaction rate constant of (3.17 +/- 0.72) x 10-10 cm3 molecule-1 s-1 was obtained. From this, the atmospheric lifetime of T2H due to Cl reaction was estimated to be 9 h for coastal regions. HCl, CO, and butanal were identified as primary products using Fourier transform infrared spectroscopy (FTIR). The molar yield of butanal was (6.4 +/- 0.3)%. Formic acid was identified as a secondary product by FTIR. In addition, butanal, 2-chlorohexenal, and 2-hexenoic acid were identified as products by gas chromatography coupled to mass spectrometry but not quantified. A reaction mechanism is proposed based on the observed products. SOA formation was observed by using a fast mobility particle sizer spectrometer. The measured SOA yields reached maximum values of about 38% at high particle mass concentrations. This work exhibits for the first time that T2H can be a source of SOA in coastal atmospheres, where Cl concentrations can be high at dawn, or in industrial areas, such as ceramic industries, where Cl precursors may be present.

Mots clés

Dates et versions

hal-03827356 , version 1 (24-10-2022)

Licence

Paternité

Identifiants

Citer

Asma Grira, Maria Antinolo, André Canosa, Alexandre Tomas, Gisele El Dib, et al.. Kinetic and Products Study of the Atmospheric Degradation of trans-2-Hexenal with Cl Atoms. Journal of Physical Chemistry A, 2022, 126 (39), pp.6973-6983. ⟨10.1021/acs.jpca.2c05060⟩. ⟨hal-03827356⟩
18 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More