Symmetry breaking and weighted Euclidean logarithmic Sobolev inequalities - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Symmetry breaking and weighted Euclidean logarithmic Sobolev inequalities

Résumé

On the Euclidean space, we establish some Weighted Logarithmic Sobolev (WLS) inequalities. We characterize a symmetry range in which optimal functions are radially symmetric, and a symmetry breaking range. (WLS) inequalities are a limit case for a family of subcritical Caffarelli-Kohn-Nirenberg (CKN) inequalities with similar symmetry properties. A generalized carré du champ method applies not only to the optimal solution of the nonlinear elliptic Euler-Lagrange equation and proves a rigidity result as for (CKN) inequalities, but also to entropy type estimates, with the full strength of the carré du champ method in a parabolic setting. This is a significant improvement on known results for (CKN). Finally, we briefly sketch some consequences of our results for the weighted diffusion flow.
Fichier principal
Vignette du fichier
WLSI.pdf (439.78 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03825574 , version 1 (22-10-2022)

Identifiants

  • HAL Id : hal-03825574 , version 1

Citer

Jean Dolbeault, Andres Zuniga. Symmetry breaking and weighted Euclidean logarithmic Sobolev inequalities. 2022. ⟨hal-03825574⟩
32 Consultations
68 Téléchargements

Partager

More