NMR assignment of human HSP90 N-terminal domain bound to a long residence time resorcinol ligand
Résumé
HSP90 is a major molecular chaperone that helps both folding and stabilization of various client proteins often implicated in growth control and cell survival such as kinases and transcription factors. However, among HSP90 clients are also found numerous oncoproteins and, through its assistance to them, HSP90 has consequently been reported as a promising anticancer target. Several ligand chemotypes, including resorcinol type ligands, were found to inhibit HSP90, most of them in an ATP competitive manner. Binding of some of these ligands modify significantly the NMR spectrum of the HSP90 ATP binding domain compared to the apo protein spectrum, hampering assignment transfer from the previously assigned human HSP90 apo state. Here we report the assignment of the 1HN, 15N, 13C', 13Cα, 13Cβ, 1Hmethyl, and 13Cmethyl chemical shifts of the 29 kDa HSP90 N-terminal domain bound to a long residence time resorcinol type inhibitor: 5-[4-(2-Fluoro-phenyl)-5-oxo-4,5-dihydro-1H-[1,2,4]triazol-3-yl]-N-furan-2-ylmethyl-2,4-dihydroxy-N-methyl-benzamide. 92% of the backbone resonances and 100% of the [1H, 13C]-resonances of Aβ, Mε, Tγ, Lδ2, Vγ2 and Iδ1 methyl groups were successfully assigned, including for the first time the assignment of the segment covering the nucleotide/drug binding site. Secondary structure predictions based on the NMR assignment reveal a structural rearrangement of HSP90 N-terminal domain upon ligand binding. The long residence time ligand induces the formation of a continuous helix covering the ligand binding site of HSP90 N-terminal domain accounting for the large differences observed in the NMR spectra between the apo and bound proteins.