The Neumann boundary condition for the two-dimensional Lax-Wendroff scheme - Archive ouverte HAL
Article Dans Une Revue Communications in Mathematical Sciences Année : 2023

The Neumann boundary condition for the two-dimensional Lax-Wendroff scheme

Résumé

We study the stability of the two-dimensional Lax-Wendroff scheme with a stabilizer that approximates solutions to the transport equation. The problem is first analyzed in the whole space in order to show that the so-called energy method yields an optimal stability criterion for this finite difference scheme. We then deal with the case of a half-space when the transport operator is outgoing. At the numerical level, we enforce the Neumann extrapolation boundary condition and show that the corresponding scheme is stable. Eventually we analyze the case of a quarter-space when the transport operator is outgoing with respect to both sides. We then enforce the Neumann extrapolation boundary condition on each side of the boundary and propose an extrapolation boundary condition at the numerical corner in order to maintain stability for the whole numerical scheme.
Fichier principal
Vignette du fichier
BC.pdf (419.38 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03810136 , version 1 (11-10-2022)

Identifiants

Citer

Antoine Benoit, Jean-François Coulombel. The Neumann boundary condition for the two-dimensional Lax-Wendroff scheme. Communications in Mathematical Sciences, 2023, 21 (8), pp.2051-2082. ⟨10.4310/CMS.2023.v21.n8.a1⟩. ⟨hal-03810136⟩
127 Consultations
212 Téléchargements

Altmetric

Partager

More