TORIC SHEAVES, STABILITY AND FIBRATIONS
Résumé
For an equivariant reflexive sheaf over a normal polarised toric variety, we study slope stability of its reflexive pullback along a toric fibration. Examples of such fibrations include equivariant blow-ups and toric locally trivial fibrations. We show that stability (resp. unstability) is preserved under such pullbacks for so-called adiabatic polarisations. In the strictly semistable situation, under locally freeness assumptions, we provide a necessary and sufficient condition on the graded object to ensure stability of the pulled back sheaf. As applications, we provide various stable perturbations of semistable tangent sheaves, either by changing the polarisation, or by blowing-up a subvariety. Finally, our results apply uniformly in specific flat families and induce injective maps between the associated moduli spaces.
Domaines
Géométrie algébrique [math.AG]Origine | Fichiers produits par l'(les) auteur(s) |
---|