Cathodoluminescence excitation spectroscopy: nanoscale imaging of excitation pathways - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Science Advances Année : 2022

Cathodoluminescence excitation spectroscopy: nanoscale imaging of excitation pathways

Résumé

Following the lifespan of optical excitations from their creation to decay into photons is crucial in understanding materials optical properties. Macroscopically, techniques such as the photoluminescence excitation spectroscopy provide unique information on the photophysics of materials with applications as diverse as quantum optics or photovoltaics. Materials excitation and emission pathways are affected by nanometer scale variations directly impacting devices performances. However, they cannot be directly accessed, despite techniques, such as optical spectroscopies with free electrons, having the relevant spatial, spectral or time resolution. Here, we explore optical excitation creation and decay in two representative optical devices: plasmonic nanoparticles and luminescent 2D layers. The analysis of the energy lost by an exciting electron that is coincident in time with a visible-UV photon unveils the decay pathways from excitation towards light emission. This is demonstrated for phase-locked interactions, such as in localized surface plasmons, and non-phase-locked ones, such as the light emission by individual point defects. This newly developed cathodoluminescence excitation spectroscopy images energy transfer pathways at the nanometer scale. It widens the toolset available to explore nanoscale materials.
Fichier principal
Vignette du fichier
2202.12520.pdf (1.76 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03806993 , version 1 (23-01-2024)

Identifiants

Citer

Nadezda Varkentina, Yves Auad, Steffi Y Woo, Alberto Zobelli, Laura Bocher, et al.. Cathodoluminescence excitation spectroscopy: nanoscale imaging of excitation pathways. Science Advances , 2022, ⟨10.1126/sciadv.abq4947⟩. ⟨hal-03806993⟩
81 Consultations
21 Téléchargements

Altmetric

Partager

Gmail Mastodon Facebook X LinkedIn More