Estimation of Statistical Properties of Fracture Networks from Thermal-tracer Experiments - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Estimation of Statistical Properties of Fracture Networks from Thermal-tracer Experiments

Guofeng Song
  • Fonction : Auteur
  • PersonId : 1172209
Delphine Roubinet
  • Fonction : Auteur
  • PersonId : 1159760
Zitong Zhou
  • Fonction : Auteur
Xiaoguang Wang
  • Fonction : Auteur
Daniel M. Tartakovsky
  • Fonction : Auteur
Xianzhi Song
  • Fonction : Auteur

Résumé

A two-dimensional particle-based heat transfer model is used to train a deep neural network. The latter provides a highly efficient surrogate that can be used in standard inversion methods, such as grid search algorithms. The resulting inversion strategy is utilized to infer statistical properties of fracture networks (fracture density and fractal dimension) from synthetic thermal experimental data. The (to-be-estimated) fracture density is well constrained by this method, whereas the fractal dimension is harder to determine and requires adding prior information on the fracture network connectivity. The method is tested on several fracture networks and hydraulic conditions.
Fichier principal
Vignette du fichier
Song2022.pdf (1.23 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03806149 , version 1 (07-10-2022)

Identifiants

  • HAL Id : hal-03806149 , version 1

Citer

Guofeng Song, Delphine Roubinet, Zitong Zhou, Xiaoguang Wang, Daniel M. Tartakovsky, et al.. Estimation of Statistical Properties of Fracture Networks from Thermal-tracer Experiments. 47th Workshop on Geothermal Reservoir Engineering, Feb 2022, Stanford, United States. ⟨hal-03806149⟩
49 Consultations
21 Téléchargements

Partager

More