Finite time extinction for a critically damped Schrödinger equation with a sublinear nonlinearity - Archive ouverte HAL
Article Dans Une Revue Advances in Differential Equations Année : 2023

Finite time extinction for a critically damped Schrödinger equation with a sublinear nonlinearity

Jesús Ildefonso Díaz
  • Fonction : Auteur
  • PersonId : 1139049

Résumé

This paper completes some previous studies by several authors on the finite time extinction for nonlinear Schrödinger equation when the nonlinear damping term corresponds to the limit cases of some ``saturating non-Kerr law'' $F(|u|^2)u=\frac{a}{\varepsilon+(|u|^2)^\alpha}u,$ with $a\in\mathbb{C},$ $\varepsilon\geqslant0,$ $2\alpha=(1-m)$ and $m\in[0,1).$ Here we consider the sublinear case $00 \text{ and } 2\sqrt{m}\mathrm{Im}(z)=(1-m)\mathrm{Re}(z)\big\}.$ Among other things, we know that this damping coefficient is critical, for instance, in order to obtain the monotonicity of the associated operator (see the paper by Liskevich and Perel'muter [16] and the more recent study by Cialdea and Maz'ya [14]). The finite time extinction of solutions is proved by a suitable energy method after obtaining appropiate a priori estimates. Most of the results apply to non-necessarily bounded spatial domains.
Fichier principal
Vignette du fichier
ADE.pdf (388.65 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03805319 , version 1 (07-10-2022)
hal-03805319 , version 2 (05-01-2023)
hal-03805319 , version 3 (27-01-2023)
hal-03805319 , version 4 (13-10-2023)

Identifiants

Citer

Pascal Bégout, Jesús Ildefonso Díaz. Finite time extinction for a critically damped Schrödinger equation with a sublinear nonlinearity. Advances in Differential Equations, 2023, 28 (3-4), pp.311-340. ⟨hal-03805319v1⟩
157 Consultations
93 Téléchargements

Altmetric

Partager

More