A First Runtime Analysis of the NSGA-II on a Multimodal Problem - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

A First Runtime Analysis of the NSGA-II on a Multimodal Problem

Résumé

Very recently, the first mathematical runtime analyses of the multi-objective evolutionary optimizer NSGA-II have been conducted (AAAI 2022, GECCO 2022 (to appear), arxiv 2022). We continue this line of research with a first runtime analysis of this algorithm on a benchmark problem consisting of two multimodal objectives. We prove that if the population size N is at least four times the size of the Pareto front, then the NSGA-II with four different ways to select parents and bitwise mutation optimizes the OneJumpZeroJump benchmark with jump size 2 ≤ k ≤ n/4 in time O(N n k). When using fast mutation, a recently proposed heavy-tailed mutation operator, this guarantee improves by a factor of k Ω(k). Overall, this work shows that the NSGA-II copes with the local optima of the OneJumpZeroJump problem at least as well as the global SEMO algorithm.
Fichier principal
Vignette du fichier
2204.13750v1.pdf (217.55 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03797602 , version 1 (04-10-2022)

Identifiants

Citer

Benjamin Doerr, Zhongdi Qu. A First Runtime Analysis of the NSGA-II on a Multimodal Problem. Parallel Problem Solving from Nature (PPSN 2022), Sep 2022, Dortmund, Germany. ⟨10.1007/978-3-031-14721-0_28⟩. ⟨hal-03797602⟩
36 Consultations
91 Téléchargements

Altmetric

Partager

More