Unsupervised multiple-choice question generation for out-of-domain Q&A fine-tuning - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Unsupervised multiple-choice question generation for out-of-domain Q&A fine-tuning

Résumé

Pre-trained models have shown very good performances on a number of question answering benchmarks especially when fine-tuned on multiple question answering datasets at once. In this work, we propose an approach for generating a fine-tuning dataset thanks to a rule-based algorithm that generates questions and answers from unannotated sentences. We show that the state-of-the-art model UnifiedQA can greatly benefit from such a system on a multiple-choice benchmark about physics, biology and chemistry it has never been trained on. We further show that improved performances may be obtained by selecting the most challenging distractors (wrong answers), with a dedicated ranker based on a pretrained RoBERTa model.
Fichier principal
Vignette du fichier
2022.acl-short.83.pdf (255.18 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03797343 , version 1 (04-10-2022)

Identifiants

Citer

Guillaume Le Berre, Christophe Cerisara, Philippe Langlais, Guy Lapalme. Unsupervised multiple-choice question generation for out-of-domain Q&A fine-tuning. 60th Annual Meeting of the Association for Computational Linguistics, May 2022, Dublin, Ireland. pp.732-738, ⟨10.18653/v1/2022.acl-short.83⟩. ⟨hal-03797343⟩
210 Consultations
129 Téléchargements

Altmetric

Partager

More