Empirical comparison of semantic similarity measures for technical question answering - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Empirical comparison of semantic similarity measures for technical question answering

Résumé

We consider the task of looking for the answer to a given user question by means of identifying the most relevant document in a technical knowledge base. We briefly introduce the NLP fields related to this task, then discuss what we think are the most promising methods to accomplish the task. The main aim of the paper is to benchmark the chosen methods on two different knowledge bases (one proprietary, one public). Every document in each KB consists of a title and a text describing a solution to a technical problem. Our tests point out that the best method for the task at hand is the use on Sentence Transformers, a deep learning based method using pre-trained language models.
Fichier principal
Vignette du fichier
abdis22.pdf (424.43 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03795996 , version 1 (04-10-2022)

Identifiants

Citer

M.N. Boukhatem, Davide Buscaldi, Leo Liberti. Empirical comparison of semantic similarity measures for technical question answering. Advances in Databases and Information Systems (ADBIS22), Sep 2022, Torino, Italy. ⟨10.1007/978-3-031-15743-1_16⟩. ⟨hal-03795996⟩
66 Consultations
93 Téléchargements

Altmetric

Partager

More