Random projections for the distance geometry problem - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Random projections for the distance geometry problem

Résumé

Random projections decrease the dimensionality of a finite set of vectors while ensuring approximate congruence, up to a multiplicative constant. Based on the theory of random projections in conic programming we derive an application of random projections to a nonconvex mathematical programming problem in distance geometry, namely that of finding the positions of the vertices of a graph in a vector space of given dimension, while ensuring that every pair of adjacent vertices is placed at a Euclidean distance equal to the corresponding edge weight.
Fichier principal
Vignette du fichier
dmd22.pdf (313.32 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03795960 , version 1 (04-10-2022)

Identifiants

  • HAL Id : hal-03795960 , version 1

Citer

Leo Liberti, Benedetto Manca, Pierre-Louis Poirion. Random projections for the distance geometry problem. Discrete Mathematics Days, Jul 2022, Santander, Spain. ⟨hal-03795960⟩
23 Consultations
46 Téléchargements

Partager

More