Practical unstructured splines: Algorithms, multi-patch spline spaces, and some applications to numerical analysis - Archive ouverte HAL
Article Dans Une Revue Journal of Computational Physics Année : 2022

Practical unstructured splines: Algorithms, multi-patch spline spaces, and some applications to numerical analysis

Résumé

In this work, we show how some recent advances on simplex spline spaces can be used to construct a polynomial-reproducing space of unstructured splines on multi-patch domains of arbitrary shape and topology. The traces of these functions on the subdomain boundaries reproduce the usual traces of standard polynomial bases used in discontinuous Galerkin (DG) approximations, allowing to borrow many theoretical and practical tools from these methods. Concurrently, we recast some theoretical results on the construction and evaluation of spaces of simplex splines into an explicit, algorithmic form. Together, these efforts allow to formulate a practical, efficient and fully unstructured multi-patch discontinuous Galerkin-isogeometric analysis (DG-IGA) scheme that bridges the gap between some current multi-patch isogeometric analysis (IGA) approaches and the more traditional mesh-based interior penalty discontinuous Galerkin (IPDG) method. We briefly discuss the advantages of this unified framework for time-explicit hyperbolic problems, and we present some interesting numerical examples using the acoustic wave equation.
Fichier principal
Vignette du fichier
Practical_unstructured_splines.pdf (10.83 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03788980 , version 1 (27-09-2022)

Identifiants

Citer

Stefano Frambati, Hélène Barucq, Henri Calandra, Julien Diaz. Practical unstructured splines: Algorithms, multi-patch spline spaces, and some applications to numerical analysis. Journal of Computational Physics, 2022, 471, pp.111625. ⟨10.1016/j.jcp.2022.111625⟩. ⟨hal-03788980⟩
72 Consultations
82 Téléchargements

Altmetric

Partager

More