Relativistic tidal compressions of a star by a massive black hole - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Astronomy and Astrophysics - A&A Année : 2010

Relativistic tidal compressions of a star by a massive black hole

Résumé


Aims: We investigate the stellar pancake mechanism during which a solar-type star is tidally flattened within its orbital plane as it passes close to a 106~M&sun; black hole.
Methods: We simulated the relativistic orthogonal compression process and follow the associated shock waves formation. We considered a one-dimensional hydrodynamical stellar model moving in the relativistic gravitational field of a non-rotating black hole. The model is numerically solved using a Godunov-type shock-capturing source-splitting method to correctly reproduce the shock wave profiles.
Results: Simulations confirm that the space-time curvature can induce several successive orthogonal compressions of the star, which give rise to several strong shock waves. The shock waves finally escape from the star and repeatedly heat up the stellar surface to high-energy values. Such a shock-heating could interestingly provide a direct observational signature of strongly disruptive star - black hole encounters through the emission of hard X or soft gamma-ray bursts. Timescales and energies of such a process are consistent with some observed events such as GRB 970815.

Dates et versions

hal-03786376 , version 1 (23-09-2022)

Identifiants

Citer

M. Brassart, Jean-Pierre Luminet. Relativistic tidal compressions of a star by a massive black hole. Astronomy and Astrophysics - A&A, 2010, 511, pp.80. ⟨10.1051/0004-6361/200913442⟩. ⟨hal-03786376⟩
4 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More