Rapeseed Protein in a High-Fat Mixed Meal Alleviates Postprandial Systemic and Vascular Oxidative Stress and Prevents Vascular Endothelial Dysfunction in Healthy Rats
Résumé
High-saturated fat and high-sucrose meals induce vascular endothelial dysfunction, the early hallmark of atherogenesis. The impact of dietary protein on vascular homeostasis remains misunderstood. In this study, we investigated whether rapeseed protein, an emergent arginine- and cysteine-rich protein, can acutely modulate the onset of adverse effects induced by a high-saturated fat meal (HFM). In a series of crossover experiments, healthy rats received 3 HFM (saturated fat: 60%; sucrose: 20%; protein: 20% energy) with the protein source being either total milk protein (MP; control), rapeseed protein (RP), or MP supplemented with cysteine and arginine to the same level as in RP (MP+AA). Endothelium-related vascular reactivity, measured as an acetylcholine-induced transient decrease in blood pressure, and plasma triglycerides, hydroperoxides, cyclic GIMP (cGMP), and free 3-nitrotyrosine were measured before and 2, 4, and 6 h after meals. Superoxide anion production, expressed as ethidine fluorescence, was measured in the aorta 6 h after meals. Whereas plasma triglycerides rose similarly in all meals, the decrease in vascular reactivity after MP was attenuated after MP+AA and entirely prevented after RP. The type of meal had no consistent effect on plasma cGMP and free 3-nitrotyrosine over the postprandial period. The postprandial increase in plasma hydroperoxides differed according to the meal, and concentrations were 43% lower 6 h after MP+AA and RP than after MP. Aortic superoxide anion production was 36% lower 6 h after RIP than MP. These results show that substituting rapeseed protein for milk protein markedly reduces vascular and oxidative disturbances induced by an HFM and this may be mediated in part by cysteine and arginine.