Traveling waves for discrete reaction-diffusion equations in the general monostable case - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Traveling waves for discrete reaction-diffusion equations in the general monostable case

Résumé

We consider general fully nonlinear discrete reaction-diffusion equations u_t = F [u], described by some function F. In the positively monostable case, we study monotone traveling waves of velocity c, connecting the unstable state 0 to a stable state 1. Under Lipschitz regularity of F , we show that there is a minimal velocity c ^+_F such that there is a branch of traveling waves with velocities c ≥ c^+_F , and no traveling waves for c < c^+_F. We also show that the map F → c^+_F is not continuous for the L ^∞ norm on F. Assuming more regularity of F close to the unstable state 0, we show that c^+_F ≥ c^*_F where the velocity c^*_F can be computed from the linearization of the equation around the unstable state 0. We show that the inequality can be strict for certain nonlinearities F. On the contrary, under a KPP condition on F , we show the equality c^+_F = c^*_F. Finally, we also give an example where c^+_F is negative.
Fichier principal
Vignette du fichier
AM-II-290622.pdf (417.99 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03783326 , version 1 (22-09-2022)

Identifiants

  • HAL Id : hal-03783326 , version 1

Citer

Mohammad Al Haj, Regis Monneau. Traveling waves for discrete reaction-diffusion equations in the general monostable case. 2022. ⟨hal-03783326⟩

Collections

TDS-MACS
47 Consultations
115 Téléchargements

Partager

More