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Traveling waves

for discrete reaction-diffusion equations

in the general monostable case

M. Al Haj1, R. Monneau2

September 22, 2022

Abstract: We consider general fully nonlinear discrete reaction-diffusion equations ut = F [u],
described by some function F . In the positively monostable case, we study monotone traveling
waves of velocity c, connecting the unstable state 0 to a stable state 1. Under Lipschitz regularity
of F , we show that there is a minimal velocity c+

F such that there is a branch of traveling waves
with velocities c ≥ c+

F , and no traveling waves for c < c+
F . We also show that the map F 7→ c+

F

is not continuous for the L∞ norm on F . Assuming more regularity of F close to the unstable
state 0, we show that c+

F ≥ c∗F where the velocity c∗F can be computed from the linearization of
the equation around the unstable state 0. We show that the inequality can be strict for certain
nonlinearities F . On the contrary, under a KPP condition on F , we show the equality c+

F = c∗F .
Finally, we also give an example where c+

F is negative.

AMS Classification: 35D40.
Keywords: Traveling waves, discrete reaction-diffusion equations, positively degenerate monos-
table nonlinearity, KPP nonlinearity, Frenkel-Kontorova model, viscosity solutions, Perron’s
method.

1 Introduction

1.1 General motivation

We were originally motivated by the study of the classical fully overdamped Frenkel-Kontorova
model, which is a system of ordinary differential equations

(1.1)
dXi

dt
= Xi+1 − 2Xi +Xi−1 + f(Xi),

where Xi(t) ∈ R denotes the position of a particle i ∈ Z at time t,
dXi

dt
is the velocity of this

particle, f is the force created by a 1-periodic potential. Such force could be for example f(x) =
1 − cos(2πx) ≥ 0. This kind of system can be, for instance, used as a model of the motion of a
dislocation defect in a crystal (see the book of Braun and Kivshar [10]). This motion is described
by particular solutions of the form

Xi(t) = φ(i+ ct) with φ′ ≥ 0 and φ bounded
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where φ is called a travelling wave moving with velocity c ∈ R. It satisfies

cφ′(z) = φ(z + 1)− 2φ(z) + φ(z − 1) + f(φ(z))

In the monostable case, say when the Lipschitz nonlinearity f satisfies f > 0 on (0, 1) with f(0) =
0 = f(1), we can moreover normalize the limits of the profile as

(1.2) φ(−∞) = 0, φ(+∞) = 1

Then it is possible to show the existence of a branch of solutions (c, φc) for all velocities c ≥ c+

and the non existence of solutions for c < c+ where c+ is the minimal velocity.
The goal of this paper is to present similar results in a general framework including Frenkel-

Kontorova model. To this end, given a real function F (whose properties will be specified later in
this Introduction), we consider solutions (c, φ) satisfying the limit conditions (1.2) to the following
generalized equation

(1.3) cφ′(z) = F (φ(z + r0), φ(z + r1), ..., φ(z + rN )) with φ′ ≥ 0

where N ≥ 0 and ri ∈ R for i = 0, ..., N such that

(1.4) r0 = 0 and ri 6= rj if i 6= j,

which does not restrict the generality. For simplicity, we will also use the following compact notation

F ((φ(z + ri))i=0,...,N ) := F (φ(z + r0), φ(z + r1), ..., φ(z + rN ))

Notice that in general equations (1.3) do not have a Strong Maximum Principle which creates
a further difficulty with respect the standard reaction-diffusion equations.

Equation (1.1) can be seen as a discretization of the following standard reaction-diffusion equa-
tion

(1.5) ut = ∆u+ f(u).

In 1937, Fisher [17] and Kolmogorov, Petrovsky and Piskunov [29] studied the traveling waves for
equation (1.5) which they proposed as a model describing the spreading of a gene throughout a
population. Later, many works have been devoted for such equation that appears in biological mod-
els for developments of genes or populations dynamics and in combustion theory (see for instance,
Aronson, Weinberger [5, 6] and Hadeler, Rothe [23]). For more developments and applications
in biology of reaction-diffusion equations, the reader may refer to [32] and to the references cited
therein. There is also a considerable work on the existence, uniqueness and stability of traveling
waves and their speed of propagation for the homogeneous Fisher-KPP nonlinearity (see for exam-
ple [24, 25, 26, 27, 36]). Such results have been shown also for the inhomogeneous, heterogeneous
and random Fisher-KPP nonlinearities (see [8, 9, 31]).

Traveling waves were studied also for discrete bistable reaction-diffusion equations (see for
instance [11, 15]). See also [1] and the references therein. In the monostable case, we distinguish
[28] (for nonlocal non-linearities with integer shifts) and [16, 30, 33, 34] (for problems with linear
nonlocal part and with integer shifts also). See also [21] for particular monostable nonlinearities
with irrational shifts. We also refer to [20, 12, 22, 13, 14, 25, 35] for different positive monostable
nonlinearities. In the monostable case, we have to underline the work of Hudson and Zinner [28]
(see also [35]), where they proved the existence of a branch of solutions c ≥ c+ for general Lipschitz
nonlinearities (with possibly an infinite number of neighbors N = +∞, and possibly p types of
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different particles, while p = 1 in our study) but with integer shifts ri ∈ Z. However, they do not
state the nonexistence of solutions for c < c+. Their method of proof relies on an approximation
of the equation on a bounded domain (applying Brouwer’s fixed point theorem) and an homotopy
argument starting from a known solution. The full result is then obtained as the size of the domain
goes to infinity. Here we underline that our results hold for the fully nonlinear case with real shifts
ri ∈ R.

Several approaches were used to construct traveling waves for discrete monostable dynamics.
We already described the homotopy method of Hudson and Zinner [28]. In a second approach,
Chen and Guo [13] proved the existence of a solution starting from an approximated problem.
They constructed a fixed point solution of an integral reformulation (approximated on a bounded
domain) using the monotone iteration method (with sub and supersolutions). This approach was
also used to get the existence of a solution in [19, 14, 21, 22]. A third approach based on recursive
method for monotone discrete in time dynamical systems was used by Weinberger et al. [30, 33].
See also [34], where this method is used to solve problems with a linear nonlocal part. In a fourth
approach [20], Guo and Hamel used global space-time sub and supersolutions to prove the existence
of a solution for periodic monostable equations.

There is also a wide literature about the uniqueness and the asymptotics at infinity of a solution
for a monostable non-linearities, see for instance [12, 27] (for a degenerate case), [13, 14] and the
references therein. Let us also mention that certain delayed reaction diffusion equations with some
Fisher-KPP non-linearities do not admit traveling waves (see for example [19, 35]).

The present work has been already announced in a preprint [2] that was accessible since 2014
and also in the PhD thesis in 2014 of the first author. Unfortunately, the life conditions of the
two authors did not permit the submission to publication of the manuscript. The present paper
corresponds to part III of [2]. The remaining parts of the preprint [2] correspond to [3] (see also
[4]).

1.2 Main results

In order to present our results, we consider for N ≥ 1 a function F : [0, 1]N+1 → R, and introduce
the following natural assumptions.

Assumption (ALip):

i) Regularity: F ∈ Lip([0, 1]N+1).

ii) Monotonicity: F (X0, X1, ..., XN ) is non-decreasing w.r.t. each Xi for i 6= 0.

Assumption (PLip):

Positive degenerate monostability: a
Let f(v) = F (v, ..., v) such that f(0) = f(1) = 0, f > 0 in (0, 1).

Our main result is:

Theorem 1.1 (Existence of a branch of traveling waves in the monostable case)
Assume (ALip) and (PLip). Then there exists a real c+ such that for all c ≥ c+ there exists a
traveling wave φ : R→ R solution (in the viscosity sense (see Definition 2.1)) of

(1.6)


cφ′(z) = F (φ(z + r0), φ(z + r1), ..., φ(z + rN )) on R
φ is non-decreasing over R
φ(−∞) = 0 and φ(+∞) = 1.

On the contrary for c < c+, there is no solution of (1.6).
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Figure 1: Positive degenerate monostable nonlinearity f

Notice that assumptions of Theorem 1.1 hold true even for equations as degenerate as a simple
ODE

cφ′ = f(φ) ≥ 0 on R

for which it is easy to see that c+ = 0. Recall also that under assumptions of Theorem 1.1, the
Strong Maximum Principle is not valid for general nonlinearities F (see for instance Remark 4.7).

Up to our knowledge, Theorem 1.1 is the first result for discrete dynamics with real shifts ri ∈ R
in the fully nonlinear case. Even when ri ∈ Z, the only result that we know for fully nonlinear
dynamics is the one of Hudson and Zinner [28]. However, the nonexistence of solutions for c < c+

is not addressed in [28].
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Figure 2: Lipschitz positive degenerate monostable nonlinearity; the rest of the figure over [0, λ
3

2 ]
is completed by dilation of center 0 and ratio λ.

See Figure 2 for an explicit Lipschitz non-linearity example for which our result (Theorem 1.1)
is still true, even if f ′(0) is not defined. We also prove that the minimal velocity c+ is unstable in
the following sense:

Proposition 1.2 (Instability of the minimal velocity c+
F )

There exists a function F satisfying (ALip) and (PLip) with a minimal velocity c+
F such that there

exists a sequence of functions Fδ (satisfying also (ALip) and (PLip) with uniform Lipschitz bound
on Fδ as δ → 0) with associated minimal velocity c+

Fδ
satisfying

Fδ → F in L∞([0, 1]N+1)

when δ → 0, but
lim inf
δ→0

c+
Fδ
> c+

F .

When f is smooth enough, we will see below in Proposition 1.4 that the minimal velocity c+ con-
tains information about f ′(0), similarly to classical result in [29] which asserts that the minimal
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velocity of reaction-diffusion equation (1.5) is c+ = 2
√
f ′(0). This shows that when F is only Lip-

schitz, it becomes much more delicate to capture c+
F and to show Theorem 1.1.

Examples of functions F satisfying assumptions (ALip) and (PLip) are given for N = 2, r0 = 0,
r1 = −1, r2 = 1 by

(1.7) F (X0, X1, X2) = X2 +X1 − 2X0 + f(X0),

with for instance non-linearity f(x) = x(1− x) or f(x) = x2(1− x)2.

In the next result, we give some lower bound on the minimal velocity c+ (given in Theorem 1.1).
To this end, we need to assume some smoothness and strict monotonicity on F near {0}N+1; and
this is given in assumption (PC1) (which is stronger than (PLip)):

Assumption (PC1):

Positive degenerate monostability: a
Let f(v) = F (v, ..., v) such that f(0) = 0 = f(1) and f > 0 in (0, 1).

Smoothness near {0}N+1: a
F is C1 over a neighborhood of {0}N+1 in [0, 1]N+1 and f ′(0) > 0.

Then we have

Theorem 1.3 (Lower bound for c+)
Let F be a function satisfying (ALip) and (PC1). Let c+ given by Theorem 1.1. Then we have

c+ ≥ c∗,

where

(1.8) c∗ := inf
λ>0

P (λ)

λ
with P (λ) :=

N∑
i=0

∂F

∂Xi
(0, ..., 0)eλri .

The proof of Theorem 1.3 is quite involved in comparison to the case of standard reaction-
diffusion equations. This is due to the fact Harnack inequality may fail in our context.
More precisely, we have to introduce a discussion assuming or not the following condition

(1.9) ∃ i0 ∈ {1, ..., N} such that ri0 > 0 and
∂F

∂Xi0

(0, ..., 0) > 0,

Notice that under assumption (1.9), we show some sort of discrete Strong Maximum Principle to
the right (because ri0 > 0) for the associated linear evolution equation (see Proposition 4.1). Under
the same assumption, we also show a Harnack inequality for the nonlinear equation satisfied by the
traveling wave (see Proposition 4.4), which is of independent interest. Notice that this Harnack
inequality also holds for c = 0 (somehow because the profile is nondecreasing). On the contrary, if
we replace (1.9) by a similar condition where ri0 < 0, then Harnack inequality can fail for c = 0
(see the counter-example given in Remark 4.7), but still holds true for c < 0 (see Proposition 4.6).
Using such Harnack inequalities, we can show Theorem 1.3.

Here, it is natural to ask if we may have c+ = c∗ in general or not. Already in the standard case
of reaction-diffusion equations, it is known that we may have c+ > c∗ (see for instance [24]). In
our case, we give in Lemma 5.2, an example of a nonlinearity where we have c+ > c∗ which shows
also that the inequality can be strict also for discrete reaction-diffusion equations. On the other
hand, as it may also be expected, we can find a KPP type condition to insure the reverse inequality
c+ ≤ c∗, as shows the following result.
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Proposition 1.4 (KPP condition to get c+ ≤ c∗)
Let F be a function satisfying (ALip) and (PLip). Let c+ given by Theorem 1.1 and assume that F
is differentiable at {0}N+1 in [0, 1]N+1. If moreover F satisfies the KPP condition:

(1.10) F (X) ≤
N∑
i=0

∂F

∂Xi
(0, ..., 0)Xi for every X ∈ [0, 1]N+1,

then c+ ≤ c∗ with c∗ defined in (1.8).

As a corollary of Theorem 1.3, we can show that c+ ≥ 0 holds true under certain conditions
(see Corollary 6.1).

More generally, contrarily to standard reaction-diffusion equations, we may have c+ < 0, as
shows the following counter-example.

Proposition 1.5 (Counter-example with c+ < 0; see Subsection 6.2)
There exists a function F satisfying (ALip) and (PC1) such that the associated minimal velocity c+

is negative.

1.3 Organization of the paper

In Section 2, we recall some useful results about viscosity solutions which are used all over the
paper. In Section 3, we give the proof of Theorem 1.1 about the existence of a minimal velocity
c+.

In Section 4, we prove different results about Strong Maximum Principles and Harnack inequal-
ities, which are used in Section 5 to do the proof of Theorem 1.3, proving that c+ ≥ c∗.

In Section 6, we present in Corollary 6.1 sufficient conditions to insure the inequality c+ ≥ 0,
and also prove Proposition 1.5 for an example of negative velocity c+. Finally in the same section,
we show the instability of the minimal velocity (proof of Proposition 1.2).

2 Preliminaries

We recall here some useful results involving viscosity solutions (see for instance [7]). Some of these
results are contained in [1].

We first recall the notion of viscosity solutions that we use in this work. To this end, we recall
that the upper and lower semi-continuous envelopes, u∗ and u∗, of a locally bounded function u
are defined as

u∗(x) = lim sup
y→x

u(y) and u∗(x) = lim inf
y→x

u(y).

and that u is upper semi-continuous if and only if u = u∗ (and similarly u is lower semi-continuous
if and only if u = u∗).

For functions u(x, t), we also define similarly (for later use)

u∗(x, t) := lim sup
(y,τ)→(x,t)

u(y, τ), u∗(x, t) := lim inf
(y,τ)→(x,t)

u(y, τ)

Definition 2.1 (Viscosity solution)
Let I = I ′ = R (or I = (−r∗,+∞) and I ′ = (0,+∞)) and u : I → R be a locally bounded function,
c ∈ R and F continuous defined on RN+1.
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- The function u is a subsolution (resp. a supersolution) on I ′ of

(2.1) cu′(x) = F ((u(x+ ri))i=0,...,N ),

if u is upper semi-continuous (resp. lower semi-continuous) and if for all test function ψ ∈
C1(I) such that u− ψ attains a local maximum (resp. a local minimum) at x∗ ∈ I ′, we have

cψ′(x∗) ≤ F ((u(x∗ + ri))i=0,...,N )
(

resp. cψ′(x∗) ≥ F ((u(x∗ + ri))i=0,...,N )
)
.

- A function u is a viscosity solution of (2.1) on I ′ if u∗ is a subsolution and u∗ is a supersolution
on I ′.

Next, we state Perron’s method to construct solutions.

Proposition 2.2 (Perron’s method ([18, Proposition 2.8]))
Let I = (−r∗,+∞) and I ′ = (0,+∞) and F be a function satisfying (ALip). Let u and v defined
on I with values in [0, 1], satisfying

u ≤ v on I,

such that u and v are respectively a sub and a supersolution of (2.1) on I ′. Let L be the set of all
functions ṽ : I → R, such that u ≤ ṽ over I with ṽ supersolution of (2.1) on I ′. For every z ∈ I, let

w(z) = inf{ṽ(z) such that ṽ ∈ L}.

Then w is a viscosity solution of (2.1) over I ′ satisfying u ≤ w ≤ v over I.

The following result is important and meaningful in our work.

Lemma 2.3 (Equivalence between viscosity and a.e. solutions, [1, Lemma 2.11])
Let F satisfying assumption (ALip). Let φ : R → [0, 1] be a non-decreasing function. Then φ is a
viscosity solution of

cφ′(x) = F ((φ(x+ ri))i=0,...,N ) on R,

if and only if φ is an almost everywhere solution of the same equation.

Having this result in hands, we have the following useful criterion to pass to the limit.

Proposition 2.4 (Stability by passage to the limit)
Let F satisfying assumption (ALip). Given a < b, let φn : I := (a − r∗, b + r∗) → [0, 1] be a
non-decreasing viscosity solution of

cnφ
′
n(x) = F ((φn(x+ ri))i=0,...,N ) on I ′ := (a, b)

satisfying the bounds
|φn|L∞(I) ≤ 1, |cn| ≤ C

Then up to a subsequence, we have

φn → φ a.e. on I, cn → c

and φ is a viscosity solution of

cφ′(x) = F ((φ(x+ ri))i=0,...,N ) on I ′

7



Proof of Proposition 2.4
The existence of a subsequence converging almost everywhere follows from classical Helly’s theorem
for monotone functions. The remaining part of the argument follows from the equivalence between
viscosity solutions and almost everywhere solutions when c = 0. In the case c 6= 0, we get bounds on
|φn|C1(I) ≤ C ′, and the result follows for instance from the classical stability of viscosity solutions
(or also by a direct argument for ODEs).

Proposition 2.5 (Solution built on a positive nondecreasing supersolution)
Assume that F satisfies (ALip) and (PLip). Assume that (c, ψ) is a supersolution in the sense that
it satisfies (in the viscosity sense)

cψ′(z) ≥ F ((ψ(z + ri))i=0,...,N ) on R
ψ is non-decreasing over R
ψ(−∞) = 0 and ψ(+∞) = 1.

and the positivity condition
ψ > 0 on R

Then there exists a solution (c, φ) of the associated equation, namely of (1.6).

Proof of Proposition 2.5
The proof relies on the method of sub/supersolutions. We refer the reader to the proof of Propo-
sition 3.2 in [3] which can be applied without changes (even if the assumptions are not exactly the
same).

3 Minimal velocity c+ and proof of Theorem 1.1

The goal of this section is the proof of Theorem 1.1, which is done in the fourth and last subsection
3.4. The three first subsections can be seen as preliminaries for the main proof.

In Subsection 3.1, we prove Proposition 3.1, which provides a direct proof of Theorem 1.1 under
the additional assumption that F is increasing in some variable Xi0 with ri0 > 0, and that c+ 6= 0.
In Subsection 3.2, we present a lemma in order to extend F from [0, 1]N+1 to the whole space
RN+1. This extension property is then used in Subsection 3.3 for a proof of Theorem 1.1, under
additional regularity and nondegeneracy assumptions (AC1) and (PC1). The result is presented in
Proposition 3.3, and the method of proof is a good preparation (in a simplified setting) for the
general proof which is done in the last subsection and which is more technical.

3.1 A direct proof but not general

We now give a natural and simplified proof of Theorem 1.1 under the additional assumption (3.1),
which is presented in the following proposition.

Proposition 3.1 (Branch of solutions under additional assumptions)
We work under the assumptions of Theorem 1.1. Let

c+ = inf E with E := {c ∈ R such that ∃ (c, φ) solution of (1.6)}.

i) (Existence of c+)
Then E 6= ∅ and c+ > −∞ with c+ ∈ E.
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ii) (Branch of velocities under an additional assumption)
Moreover, if the following additional assumption is satisfied

(3.1) c+ 6= 0 and F is increasing in Xi0 with ri0 > 0

then for every c ≥ c+ there exists a solution of (1.6), and there is no solution for c < c+.

Sketch of the proof of Proposition 3.1

Step 1: E 6= ∅
Step 1.1: A supersolution φε
We follow an argument of Proposition 3.4 in [3], that we recall here without too much details (in
particular because we will give later a more general method of proof of Theorem 1.1 and then as
a corollary, it will give a second proof of Proposition 3.1). With f(v) := F (v, . . . , v), we first solve
the ODE

h′0 := f(h0) ≥ 0 on R with h0(0) =
1

2

Then for ε > 0, we can set

φε(x) = h0(εaεx) with aε = 1 +M0ε

Then for M0 > 0 large enough (depending on |f ′|L∞(R), on r∗ ≥ |ri| and on the Lipschitz constant
of F ), and ε > 0 small enough, we can insure that

ε−1φ
′
ε ≥ F ((φε(x+ ri))i=0,...,N ) with φε > 0 on R

Step 1.2: construction of a solution φc
Having a positive increasing supersolution φε for the velocity c = ε−1, we can then apply Proposition
2.5 which shows the existence of a nondecreasing solution φc of

cφ′c = F ((φc(x+ ri))i=0,...,N ) with φ′c ≥ 0 on R with
1

2
∈ [(φc)∗(0), (φc)

∗(0)]

of velocity c = ε−1 large enough. This forces in particular φc(−∞) = 0 and φc(+∞) = 1. This
implies that E 6= ∅.

Step 2: c+ > −∞
Consider a sequence cn ∈ E such that cn → c+ and (cn, φn) is a solution of (1.6), and assume by
contradiction that c+ = −∞. Setting φ̃n(x) = φn(|cn|x), and up to translate the profile, we can
insure that

(3.2) −φ̃′n(y) = F

((
φ̃n

(
y +

ri
|cn|

))
i=0,...,N

)
with φ̃′n ≥ 0 and φ̃n(0) =

1

2

This gives a uniform Lipschitz estimate

|φ̃′n|L∞(R) ≤M

Using Ascoli’s Theorem, we can pass to the limit φ̃n → φ̃ (up to a subsequence) which solves

−φ̃′ = F (φ̃, ..., φ̃) = f(φ̃) ≥ 0 with φ̃′ ≥ 0 and φ̃(0) =
1

2

This gives a contradiction with the fact that f > 0 on (0, 1). Therefore c+ > −∞.
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Step 3: c+ ∈ E
Consider again a sequence of solutions (cn, φn) such that cn → c+, say with

1

2
∈ [(φn)∗(0), (φn)∗(0)].

Then we have φn → φ+ at least almost everywhere, and by the stability of viscosity solutions (see
Proposition 2.4), we see that the limit satisfies (in the viscosity sense)

c+(φ+)′(x) = F ((φ+(x+ ri))i=0,...,N ) and (φ+)′ ≥ 0 on R with
1

2
∈ [(φ+)∗(0), (φ+)∗(0)].

This shows that (c+, φ+) is a solution and then c+ ∈ E .

Step 4: branch of solutions E = [c+,+∞) under assumption (3.1)
Step 4.1: φ+ > 0
If c+ < 0, then we know from [1, Lemma 6.1] that a Strong Maximum Principle holds. Precisely it
shows that if φ+(x0) = 0, then

φ+ = 0 on [x0,+∞)

which leads to a contradiction with the fact that φ(+∞) = 1.
If c+ > 0 and assuming moreover that F is increasing in Xi0 with ri0 > 0, we know from [1, Lemma
6.2] that another Strong Maximum Principle holds. Precisely is shows that if φ+(x0) = 0, then

φ+ = 0 on R

which leads again to a contradiction with φ(+∞) = 1.
Because we assumed that c+ 6= 0, this shows that

φ+ > 0 on R

Step 4.2: getting solutions φc
For any c > c+, we see that the nondecreasing function φ+ satisfies

c(φ+)′ ≥ F ((φ+(x+ ri))i=0,...,N ) with (φ+)′ ≥ 0 and φ+ > 0 on R.

Having a positive nondecreasing supersolution φ+, we can proceed as in Step 1.2 and construct a
solution φc of (1.6). This shows that E = [c+,+∞) and ends the proof of the proposition.

3.2 Extension of F

In order to make the proof of Theorem 1.1 (and of its simplified version Proposition 3.3), it will be
useful to extend the function F defined on [0, 1]N+1 to a function F̃ defined on RN+1. This is the
following result.

Lemma 3.2 (Extension of F , Lemma 2.1 in [1])
Consider a function F defined over [0, 1]N+1 and satisfying (ALip) such that F (0, ..., 0) =
F (1, ..., 1) = 0. There exists an extension F̃ defined over RN+1 such that

F̃|
[0,1]N+1

= F

and F̃ satisfies

Assumption (ÃLip):
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Regularity: F̃ is globally Lipschitz continuous over RN+1.

Monotonicity: F̃ (X0, ..., XN ) is non-decreasing w.r.t. each Xi for i 6= 0.

Periodicity: F̃ (X0 + 1, ..., XN + 1) = F̃ (X0, ..., XN ) for every X = (X0, ..., XN ) ∈ RN+1.

Notice that the function f̃(v) := F̃ (v, ..., v) is nothing but a periodic extension of f on R with
period 1, that is

f̃|[0,1] = f,

hence f̃(0) = f̃(1) = 0.
Notice also that φ is a solution of (1.6) if and only if φ solves

cφ′(z) = F̃ ((φ(z + ri))i=0,...,N ) on R
φ is non-decreasing over R
φ(−∞) = 0 and φ(+∞) = 1,

3.3 A simplified proof assuming more regularity on F

In this subsection, and for some pedagogical reasons, we prove a simplified version of Theorem 1.1
in a special case when F is smooth (see Proposition 3.3 below). The arguments of this simplified
proof will be also used in the proof of the general Theorem 1.1, but under more technicalities. To
state our result, we need to introduce the following assumptions including additional smoothness.

Assumption (AC1):

Regularity: F ∈ C1([0, 1]N+1).

Monotonicity: F (X0, ..., XN ) is non-decreasing w.r.t. each Xi for i 6= 0.

Assumption (P ′
C1):

Positive monostability: a
Let f(v) = F (v, ..., v) such that f(0) = 0 = f(1) and f > 0 in (0, 1).

Nondegeneracy near {0}N+1 and {1}N+1: a
There exists δ > 0 such that {

f ′ > 0 on (0, δ)

f ′ < 0 on (1− δ, 1)

Proposition 3.3 (Branch of solutions under smoothness assumptions)
Consider a function F satisfying (AC1) and (P ′C1). Then the result of Theorem 1.1 holds true.

In order to give a proof of Proposition 3.3, we will use the following result.

Lemma 3.4 (Existence of a hull function ([18, Theorem 1.5 and Theorem 1.6, a1,a2]))
Assume that F̃ satisfies (ÃLip) and let p > 0 and σ ∈ R. There exists a unique real λ(σ, p) = λp(σ)
such that there exists a locally bounded function hp : R→ R satisfying (in the viscosity sense):

λph
′
p(z) = F ((hp(z + pri))i=0,...,N ) + σ on R

hp(z + 1) = hp(z) + 1

h′p(z) ≥ 0

|hp(z + z′)− hp(z)− z′| ≤ 1 for any z, z′ ∈ R.
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Moreover, there exists a constant K > 0, independent on p and σ, such that

|λp − σ| ≤ K(1 + p)

and the function
λp : R→ R

σ 7→ λp(σ)

is continuous nondecreasing with λp(±∞) = ±∞.

Proof of Proposition 3.3
Step 1: extension of F
We first extend F in F̃ on RN+1 using Lemma 3.2. We then consider a perturbation of the equation
using an additional parameter σ. We consider solutions (c, φ) to

(3.3)


cφ′(z) = F̃ (φ(z + r0), φ(z + r1), ..., φ(z + rN )) + σ on R
φ is non-decreasing over R
φ(−∞) = mσ and φ(+∞) = 1 +mσ.

Here for
σδ := −min {f(δ), f(1− δ)} < 0

and for σ ∈ (σδ, 0] and f̃(v) = F̃ (v, . . . , v), we consider the unique roots mσ, bσ of

f̃(mσ) + σ = 0, mσ ∈ (−δ, 0], and f̃(bσ) + σ = 0, bσ ∈ [0, δ)

Now up to decrease δ > 0 (and then |σδ|), we can assume that we have for all σ ∈ (σδ, 0)
f̃ + σ < 0 on (mσ, bσ)

f̃ + σ > 0 on (bσ,mσ + 1)

f̃ ′(bσ) > 0 and f̃ ′(mσ) = f̃ ′(mσ + 1) < 0.

which means that f̃ + σ is of bistable type on [mσ, 1 +mσ].
Step 2: existence of solutions in the bistable case σ ∈ (σδ, 0)
Then from Theorems 1.2 and 1.6 a) in [1], and assuming (AC1) and (P ′C1), we know that for each
σ ∈ (σδ, 0) as above, there exists a unique velocity c = c(σ) such that there exists a solution (c, φc)
of (3.3).
Step 3: definition of c+

Step 3.1: bound from above on the velocity
Moreover from Step 1.2 of the proof of Proposition 3.1, we know the existence of solutions (cε, φcε)
for σ = 0 with cε = ε−1 large enough. Then up to translate the profiles, we get φcε(x) ≥ φc(x),
and the comparison for the evolution equation (see for instance [1])

ut = F̃ ((u(x+ ri))i=0,...,N )

implies that φcε(x+ cεt) ≥ φc(x+ ct) which implies (using φcε(−∞) < φc(+∞))

cε ≥ c = c(σ)

A similar arguments allows to see that the map σ 7→ c(σ) is nondecreasing for σ ∈ (σδ, 0). Hence
we can define

c+ := lim
0>σ→0−

c(σ) ≤ cε < +∞
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Step 3.2: existence of a solution (c+, φ+) for σ = 0
We consider a sequence σn → 0− and the associated sequence of solutions (cn, φn) of (3.3) with
σ = σn and cn = c(σn). Up to translate φn, we can assume that

1

2
∈ [(φn)∗(0), (φn)∗(0)]

Then up to extract a subsequence, we have φn → φ+ at least almost everywhere. Moreover from
the stability of viscosity solutions (see Proposition 2.4), we see that (c+, φ+) is still a solution of
(3.3) for σ = 0, is a solution of (1.6).
Step 3.3: no solutions for c < c+ and σ = 0
Assume that (c̃, φ̃) is a solution for σ = 0. Then the comparison argument used in Step 3.1 shows
that

c(σ) ≤ c̃ for all σ ∈ (σδ, 0)

Taking the limit σ → 0−, we get
c+ ≤ c̃

This shows that for all c < c+, there are no solutions (c, φ) for σ = 0.

Step 4: filling the gap: existence of solutions for each c > c+

We follow the proof of Proposition 5.2 in [3].
Step 4.1: change of variables
We consider c > c+. We want to show that there exists a solution φc of (1.6). To this end, we want
to use the structure with perturbation σ, even in the absence of strong maximum principle. This
is done in Lemma 3.4. Given c, we can choose σ = σ(c, p) such that

λp = cp

This shows that the change of variables

φp(x) := hp(px)

satisfies 
cφ′p(x) = F̃ ((φp(x+ ri))i=0,...,N ) + σ(c, p) on R
φ′p(x) ≥ 0

φp(x+
1

p
) = φp(x) + 1

Up to translate the profile, we can also assume that for some parameter θ ∈ [0, 1] we have

θ ∈ [(φp)∗(0), (φp)
∗(0)]

Step 4.2: passing to the limit p→ 0+

Then we have sufficient compactness such that, up to extract a subsequence, we can to pass to the
limit φp → φ almost everywhere and σ(c, p)→ σ0 as p→ 0+, and get

cφ′(x) = F̃ ((φ(x+ ri))i=0,...,N ) + σ0 on R
φ′(x) ≥ 0

φ(+∞)− φ(−∞) ≤ 1

θ ∈ [(φ∗(0), (φ∗(0)]

At infinity, we get
f̃(φ(±∞)) + σ0 = 0 with φ(−∞) ≤ θ ≤ φ(+∞)
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Because f̃ ≥ 0, we deduce that σ0 ≤ 0. Assume by contradiction that

σ0 < 0

and let σ ∈ (σδ, 0) be such that
σ0 < σ < 0

and choose
θ = 0

This implies that
φ(−∞) < mσ, 0 < φ(+∞) < 1 +mσ

Hence, up to translation, we can compare the profiles and get by comparison for all time t ≥ 0 that

φ+(x+ c+t) ≥ φ(x+ ct)

which implies c+ ≥ c. Contradiction. We deduce that

σ0 = 0

Now choosing

θ =
1

2

we deduce that

f̃(φ(±∞)) = 0, φ(−∞) ≤ 1

2
≤ φ(+∞), φ(+∞)− φ(−∞) ≤ 1

The fact that f̃ > 0 on (0, 1) implies that

φ(−∞) = 0, φ(+∞) = 1

and this shows that (c, φ) is a solution of the equation for σ = 0, i.e. of (1.6). Because this is true
for each c > c+, this ends the proof of the proposition.

3.4 Proof of Theorem 1.1

We are now ready to give a general proof of Theorem 1.1.

Proof of Theorem 1.1
The main idea consists to come back to the proof of Proposition 3.3, by approximation and com-
parison.
Step 1: definition of the approximation F̃δ
Given F defined on [0, 1]N+1 satisfying (ALip) and (PLip), we set for X = (X0, ..., XN ) ∈ [0, 1]N+1

and δ > 0 small
Fδ(X) = F (X)− f(X0) + fδ(X0)

where

fδ(v) =


max

(
f(δ) + L0(v − δ), 0

)
on [0, δ]

max
(
f(1− δ)− L0(v − (1− δ)), 0

)
on [1− δ, 1]

f on [δ, 1− δ],

with a constant L0 > 0 satisfying L0 > Lip(f). Notice that the choice of the constant L0 allows to
see that the map δ 7→ fδ in nonincreasing for δ > 0 small. Clearly, we also have Fδ(v, ..., v) = fδ(v).
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We set 
bδ = δ − f(δ)

L0
> 0

1 +mδ = 1− δ +
f(1− δ)
L0

< 1

which satisfy
0 < bδ < δ < 1− δ < 1 +mδ < 1,

and
fδ(bδ) = 0 = fδ(1 +mδ) and fδ > 0 on (bδ, 1 +mδ)

and moreover the comparison
0 ≤ fδ ≤ f on [0, 1]

Let f̃ and f̃δ be the 1-periodic extensions to R of the functions f, fδ. Now let F̃ defined on
RN+1 as the extension of the functions F to RN+1 given by Lemma 3.2, which satisfies f̃(X0) =
F̃ (X0, . . . , X0). We also define for X = (X0, ..., XN ) ∈ [0, 1]N+1

F̃δ(X) = F̃ (X)− f̃(X0) + f̃δ(X0)

Because f̃δ ≤ f̃ , we see that we have the comparison

F̃δ ≤ F̃ over RN+1.

Now given δ > 0, for σ < 0 small fixed (0 < −σ < min
[δ,1−δ]

f), we define uniquely 0 < bδ,σ < 1+mδ,σ <

1 such that 

(
f̃δ + σ

)
(bδ,σ) = 0 =

(
f̃δ + σ

)
(1 +mδ,σ) =

(
f̃δ + σ

)
(mδ,σ)

f̃δ + σ < 0 on (mδ,σ, bδ,σ)

f̃δ + σ > 0 on (bδ,σ, 1 +mδ,σ)

f̃ ′δ(bδ,σ) = L0 > 0, f̃ ′δ(mδ,σ) = −L0 < 0

which shows that f̃δ + σ is of bistable type on [mδ,σ, 1 +mδ,σ]. Notice also that{
(−δ,mδ] 3 mδ,σ → mδ

[bδ, δ) 3 bδ,σ → bδ
as σ → 0−.

Step 2: existence of a solution (cδ,σ, φδ,σ) for the nonlinearity Fδ for σ < 0 small
We are in the bistable case. Hence as in Step 2 of the proof of Proposition 3.3, still from Theorems
1.2 and 1.6 a) in [1], we see that there exists a unique velocity cδ,σ such that there exists a solution
φδ,σ of

(3.4)


cδ,σφ

′
δ,σ(x) = F̃δ((φδ,σ(x+ ri))i=0,...,N ) + σ on R

φδ,σ is non-decreasing over R
φδ,σ(−∞) = mδ,σ and φδ,σ(+∞) = 1 +mδ,σ.

Step 2.1: cδ,σ is nondecreasing in σ for δ fixed
A variant of Step 3.1 of the proof of Proposition 3.3 shows that the map

(3.5) σ 7→ cδ,σ is nondecreasing

which follows from the fact that the map σ 7→ mδ,σ is nondecreasing.
Step 2.2: cδ,σ is nonincreasing in δ for σ fixed
Similarly to Step 2.1 above, we deduce that the map

δ 7→ cδ,σ is nonincreasing
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which follows from the fact that the map δ 7→ mδ,σ is nonincreasing.

Step 3: definition of c+

Step 3.1: first, passing to the limit σ → 0−

As in Step 3.1 of the proof of Proposition 3.3, we know that there exists a solution (cε, φcε) of
cεφ
′(z) = F̃ ((φcε(x+ ri))i=0,...,N ) on R

φcε is non-decreasing over R
φcε(−∞) = 0 and φcε(+∞) = 1.

with cε = ε−1 large enough. In particular it satisfies for σ < 0{
cεφ
′
cε(z) ≥ F̃δ((φcε(x+ ri))i=0,...,N ) + σ on R

φcε(−∞) > mδ > mδ,σ, φcε(+∞) > 1 +mδ,σ > φcε(−∞)

Again the comparison φcε(x+ cεt) ≥ φδ,σ(x+ cδ,σt) implies

cδ,σ ≤ cε < +∞

We can then define (using the monotonicity in σ)

c+
δ := lim

0>σ→0−
cδ,σ ≤ cε < +∞

and from (3.5), we deduce the following monotonicity

δ 7→ c+
δ is nonincreasing.

Now up to extract a subsequence, we have φδ,σ → φ+
δ almost everywhere as σ → 0− and up to

translate the profile φδ,σ correctly, we can get (passing to the limit in (3.4))

(3.6)



c+
δ (φ+

δ )′(x) = F̃δ((φ
+
δ (x+ ri))i=0,...,N ) on R

φ+
δ is nondecreasing over R
mδ ≤ φ+

δ (−∞) and φ+
δ (+∞) ≤ 1 +mδ

bδ +mδ

2
∈ [(φ+

δ )∗(0), (φ+
δ )∗(0)]

This shows in particular that

(3.7) mδ ≤ φ+
δ (−∞) ≤ bδ, φ+

δ (+∞) = 1 +mδ

Step 3.2: second, passing to the limit δ → 0+

Using the monotinicity of the map δ 7→ c+
δ and the fact that c+

δ ≤ cε < +∞, we can define the
finite limit

c+ := lim
δ→0+

c+
δ

Again up to extract a subsequence, we have φδ → φ+ almost everywhere and up to translate the
profile φ+

δ correctly, we can get (passing to the limit in (3.6) with bδ,mδ → 0)

(3.8)



c+(φ+)′(x) = F̃ ((φ+(x+ ri))i=0,...,N ) on R
φ+ is non-decreasing over R
0 ≤ φ+(−∞) and φ+(+∞) ≤ 1

1

2
∈ [(φ+)∗(0), (φ+)∗(0)]
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which implies
φ+(−∞) = 0 and φ+(+∞) = 1.

This shows that (c+, φ+) is a solution of (1.6).

Step 3.3: no solutions for c < c+

Assume that (c, φc) is a solution of (1.6). Then we can apply the reasoning of Step 3.1 with (cε, φcε)
replaces by (c, φc). We finally get

c+ ≤ c

and we deduce that there is no solution (c, φc) of (1.6) with c < c+.

Step 4: filling the gap: existence of solutions for each c > c+

Recall that we have reached both the existence of a solution (c+, φ+) for F̃ and σ = 0, and also
for δ > 0 small enough the existence of (c+

δ , φδ) solution of (3.6)-(3.7) with F̃δ and σ = 0, where
c+
δ ≤ c

+.
Step 4.1: changes of variables
We choose any c > c+ ≥ c+

δ and proceed exactly as in Step 4.1 of the proof of Proposition 3.3, but

with F̃ replaced by F̃δ. We get here λp = cp for σ = σδ(c, p).
Step 4.2: passing to the limit p→ 0+

Again we get σδ(c, p) → σ0 ∈ R, and for any given θ ∈ [0, 1], we get the existence of some φ = φδ
solution of 

cφ′δ(x) = F̃δ((φδ(x+ ri))i=0,...,N ) + σ0 on R
φ′δ(x) ≥ 0

φδ(+∞)− φδ(−∞) ≤ 1

θ ∈ [(φδ)∗(0), (φδ)
∗(0)]

At infinity, we get

f̃δ(φδ(±∞)) + σ0 = 0 with φδ(−∞) ≤ θ ≤ φδ(+∞)

Because f̃δ ≥ 0, we deduce that σ0 ≤ 0. Assume by contradiction that

σ0 < 0

and let σ ∈ (σδ, 0) be such that
σ0 < σ < 0

and choose
θ = 0

This implies that

φδ(−∞) < mδ,σ ≤ mδ, 0 < φδ(+∞) < 1 +mδ,σ ≤ 1 +mδ

Recall also that (3.7) means

mδ ≤ φ+
δ (−∞) ≤ bδ, φ+

δ (+∞) = 1 +mδ

Again, up to translation, we can compare the profiles and get by comparison for all time t ≥ 0 that

φ+
δ (x+ c+

δ t) ≥ φδ(x+ ct)

which implies c+
δ ≥ c. Contradiction. We deduce that

σ0 = 0
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Step 4.3: passing to the limit δ → 0+

Now for the choice θ = 1
2 and up to extract a subsequence, we get φδ → φ a.e. as δ → 0+ and the

limit solves 

cφ′(x) = F̃ ((φ(x+ ri))i=0,...,N ) on R
φ′(x) ≥ 0

φ(+∞)− φ(−∞) ≤ 1

1

2
∈ [φ∗(0), φ∗(0)]

with
f̃(φ(±∞)) = 0

Again because f̃ > 0 on (0, 1), it forces

φ(−∞) = 0, φ(−∞) = 1

and this shows that (c, φ) is a solution of the equation for σ = 0, i.e. of (1.6). Because this is true
for each c > c+, this ends the proof of the theorem.

4 Preliminaries on Harnack inequalities

The goal of this section is to prove Harnack inequalities (Propositions 4.4 and 4.6), that we will
use in the next section to show that c+ ≥ c∗ under certain assumptions. Recall that such Harnack
inequalities may fail in general (see Remark 4.7).

We start with the following strong maximum principle for a linear evolution problem.

Proposition 4.1 (A strong maximum principle for a linear evolution problem)
Let F be a function satisfying (ÃLip) and differentiable at {0}N+1. Assume that

∃ i0 ∈ {0, ..., N} such that ri0 ∈ R and
∂F

∂Xi0

(0, ..., 0) > 0.

Let T > 0 and u : R× [0, T )→ [0,+∞) be a lower semi-continuous function which is a (viscosity)
supersolution of the linear equation

(4.1) ut(x, t) =

N∑
i=0

∂F

∂Xi
(0, ..., 0)u(x+ ri, t) for (x, t) ∈ R× (0, T ).

If u(x0, t0) = 0 for some (x0, t0) ∈ R× (0, T ), then

u(x0 + kri0 , t) = 0 for all k ∈ N and 0 ≤ t ≤ t0.

Proof of Proposition 4.1
Let u be a lower semi-continuous supersolution of (4.1) such that u ≥ 0 and assume that there
exists some (x0, t0) ∈ R× (0, T ) such that u(x0, t0) = u∗(x0, t0) = 0.
Step 1: u(x0, t) = 0 for all t ∈ [0, t0]
Step 1.1: u(x0, ·) is a viscosity supersolution of (4.2) on (0, T )
Because u ≥ 0 and ∂F

∂Xi
(0, . . . , 0) ≥ 0 for i 6= 0, we deduce that u satisfies in the viscosity sense

ut(x, t) ≥ −Lu with L :=

∣∣∣∣ ∂F∂X0
(0, . . . , 0)

∣∣∣∣
18



Recall also that to check the inequality in the viscosity sense, we have to replace as usual the
derivatives of u (where we need them) by the derivative of the test function, i.e. here we have only
to do it for ut.

Now setting v(t) = u∗(x0, t), we claim that v satisfies in the viscosity sense

(4.2) vt ≥ −Lv on (0, T ).

This is indeed quite classical but we still explain it. Consider a smooth test function φ touching
v∗ = v from below at some time t0 ∈ (0, T ). We can moreover assume that the contact is strict,
i.e. that

φ ≤ v∗ with equality only at t0

Then, classically, we penalize φ around the space position x0 as a new function

φε(x, t) := φ(t)− ε−1|x− x0|2

Now for any r, ρ > 0 small enough we can define the cylinder

Qρ,r := Ix × It ⊂ R× (0, T ) with Ix := [x0 − ρ, x0 + ρ], It := [t0 − r, t0 + r]

Moreover, for ρ > 0 small enough (depending on r), we have (from the strict contact)

φε < u∗ on Ix × (∂It)

Now for ε > 0 small enough (depending on r, ρ), we also get that

φε < u∗ on (∂Ix)× It

We can moreover choose r = rρ and ρ = ρε as sequences as ε→ 0 such that

rε, ρε → 0+

and because
φε = u∗ at (x0, t0) =: P0

we deduce that
φε ≤ u∗ − cε with equality at Pε ∈ Int(Qρε,rε)

with
(xε, tε) = Pε → P0 and 0 ≥ cε

In particular w ehave
ε−1|xε − x0|2 + u∗(xε, tε)− φ(tε) = cε

and taking the lim inf as ε→ 0, we deduce that (up to extract a subsequence)

cε → 0, ε−1|xε − x0|2 → 0, u∗(xε, tε)→ u∗(x0, t0)

On the other hand the viscosity inequality for u∗ gives with φ̃ε := φε + cε that

∂tφ̃ε(Pε) ≥ −Lφ̃ε(Pε)

and then at the limit
∂tφ(t0) ≥ −Lφ(t0)

which means precisely that v is a viscosity supersolution, i.e. satisfies (4.2).
Step 1.2: conclusion
Setting for any s0 ∈ (0, t0)

w(t) := e−L(t−s0)v(s0)
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we see that w is a solution of the ODE

∂tw = −Lw

while v is a supersolution on (s0, t0) which coincides with w at time t = s0. Then the comparison
principle for ODEs (in the viscosity sense) implies that

w ≤ v on [s0, t0]

Now the fact that u(x0, t0) = 0 = v(t0) implies that

0 = v(s0) = u∗(s0, x0)

This shows that
u∗(t, x0) = 0 for all t ∈ [0, t0]

Because u is lower semi-continuous, this gives the expected result for u = u∗.
Step 2: u(x0 + ri0 , t0) = 0
Using the test function φ ≡ 0 at (x0, t0) we get

0 = φt(x0, t0) ≥
N∑
i=0

∂F

∂Xi
(0, ..., 0)u(x0 + ri, t0)

≥ ∂F

∂X0
(0, ..., 0)u(x0, t0) +

∂F

∂Xi0

(0, ..., 0)u(x0 + ri0 , t0),

Because u(x0, t0) = 0 and ∂F
∂Xi0

(0, ..., 0) > 0, we deduce that

u(x0 + ri0 , t0) = 0.

Step 3: u(x0 + kri0 , t) = 0 for k ∈ N and t ∈ [0, t0]
We just apply Steps 1 and 2 iteratively. This ends the proof of the Proposition.

Now, we introduce a nonlinear problem whose linearization around 0 is the linear problem
studied in Proposition 4.1 for which we have a strong maximum principle under certain assumptions.
In the next result we first show the existence of a solution to the nonlinear problem, and later we
will give a bound from below on this solution under certain assumptions.

Lemma 4.2 (Existence of a solution to the nonlinear problem)
Consider a function F satisfying (ÃLip) such that F|[0,1]N+1 satisfies (PLip) and let ε ∈ (0, 1]. Then
there exists ψ : R× (0,+∞)→ R viscosity solution of

(4.3) ψt(x, t) = F ((ψ(x+ ri, t))i=0,...,N ) on R× (0,+∞)

with initial condition satisfying

(4.4) ψ∗(·, 0) = εH∗ and ψ∗(·, 0) = εH∗,

where H = 1[0,+∞) is the Heaviside function.

Proof of Lemma 4.2
The construction of ψ is naturally done by approximation.
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Step 1: construction of ψδ solution of (4.3)
Let δ > 0 and for

H(x) ≤ Hδ(x) :=


0 if x ≤ −δ
x

δ
+ 1 if x ∈ [−δ, 0]

1 if x ≥ 0

Because Hδ is bounded and uniformly continuous, we know ([18, Corollary 2.9]) that there is a
unique continuous solution ψδ of (4.3) with the prescribed initial data for ε ∈ (0, 1]

ψδ(x, 0) := εHδ(x) for all x ∈ R

Step 2: properties of ψδ
Recall that equation (4.3) admits a comparison principle (see [18, Proposition 2.5]). We then
deduce that

0 ≤ ψδ ≤ 1

Moreover, since the map δ 7→ Hδ is nondecreasing for δ > 0, we deduce the same property for ψδ.
Moreover since Hδ(x+ h) ≥ Hδ(x) for all h ≥ 0, we deduce the same property for ψδ, which shows
that the map x 7→ ψδ(x, t) is nondecreasing.
Similarly, using the bound

sup
[0,1]N+1

|F | ≤ C0

we can deduce that
|ψδ(x, t)− ψδ(x)| ≤ C0t

and similarly that
|ψδ(x, t)− ψδ(x, s)| ≤ C0|t− s|

Step 3: the limit δ → 0
Since the map δ 7→ ψδ is nondecreasing for δ > 0, we can define the pointwise limit

ψ := lim
δ→0+

ψδ

Using the stablity of viscosity solutions, we deduce that ψ∗ and ψ∗ are respectively supersolution
and subsolution of (4.3) on R× (0,+∞). Moreover we deduce also that ψ satisfies{

ψ is nondecreasing w.r.t. x

|ψ(x, t)− ψ(x, s)| ≤ C0|t− s| for all x ∈ R, t, s ∈ [0,+∞).

Moreover, the fact that those properties are also satisfied by ψδ uniformly in δ > 0, joint to the
fact that

ψδ(x, 0) = εHδ(x)

and the good convergence Hδ → H outside the origin, implies easily that at the limit we have

(ψ∗)(x, 0) = εH∗(x), (ψ∗)(x, 0) = εH∗(x)

This ends the proof of the lemma.

Proposition 4.3 (Lower bound on a solution to the nonlinear problem)
Consider a function F satisfying (ÃLip) such that F|[0,1]N+1 satisfies (PLip). Assume moreover that

F is C1 over a neighborhood of {0}N+1 in [0, 1]N+1 and

∃ i0 ∈ {1, ..., N} such that ri0 > 0 and
∂F

∂Xi0

(0, ..., 0) > 0.
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Then there exists ε0 ∈ (0, 1] and T0 > 0 such that for all δ ∈ (0, T0) and R > 0, there exists
κ = κ(δ,R) > 0 such that for every 0 < ε ≤ ε0, the function ψ = ψε given by Lemma 4.2 with
initial conditions (4.4) satisfies

(4.5) ψε(x, t) ≥ κε for all (x, t) ∈ [−R,R]× [δ, T0].

Proof of Proposition 4.3
We first give an upper bound proportional to ε on the solution ψ = ψε of (4.3) and then prove the
lower bound by contradiction.
Step 1: refined upper bound on ψ on R× [0, 2T0]
Let

M(t) := sup
x∈R

ψ∗(x, t)

It is easy to see that M(0) = ε and that M satisfies in the viscosity sense the ODE inequality

∂tM ≤ F (M, . . . ,M) = f(M) on (0,+∞)

Then it is natural to introduce the solution M0 of the ODE{
M ′0(t) = f(M0(t)) ≥ 0 for (0,+∞)

M0(0) = ε.

Using
L1 := Lip(f)

we get
0 ≤ f(v) ≤ 2L1ε for v ∈ [0, 2ε]

and then

M0(t) ≤ ε+ 2L1εt ≤ 2ε for all t ∈ [0, 2T0] with T0 :=
1

4L1

The comparison of the subsolution M with the solution M0 shows that M ≤M0 and then

0 ≤ ψε(x, t) ≤ 2ε for all t ∈ [0, 2T0]

Step 2: establishing (4.5)
Given T0 as in Step 1, assume by contradiction that (4.5) is false. Then there exist δ ∈ (0, T0),
R > 0 and sequences εn → 0, κn → 0 and points such that

ψεn(Pn) ≤ κnεn with Pn = (xn, tn) ∈ [−R,R]× [δ, T0]

Then we can define

ψn(x, t) :=
1

εn
ψεn(x, t) for all (x, t) ∈ R× [0, 2T0]

which satisfies as n→ +∞ 
0 ≤ ψn ≤ 2 over R× [0, 2T0]

ψn(Pn) ≤ κn → 0

(ψn)∗(x, t = 0) = H∗(x)

and

(ψn)t(x, t) =
1

εn
F (εn(ψn(x+ ri, t))i=0,...,N ).
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Step 2.1: uniform lower bound on ψn
Denote by Z = (ψn(x + ri, t))i=0,...,N . Since F is C1 over a neighborhood of {0}N+1, then for εn

small enough, we get with L := sup[0,1]N+1

∣∣∣ ∂F∂X0

∣∣∣
(ψn)t(x, t) =

1

εn
F (εn(ψn(x+ ri, t))i=0,...,N )

=
N∑
i=0

∫ 1

0

∂F

∂Xi
(sεnZ)ψn(x+ ri, t)ds

≥ −Lψn(x, t),

where we have used the fact that ψn ≥ 0 and ∂F
∂Xi
≥ 0 for all i 6= 0. Hence ψn is a supersolution of

the linear equation

(4.6) wt(x, t) = −Lw(x, t).

Setting for η > 0 small

H̃η(x) =


0 if x < 0
x

η
if 0 ≤ x ≤ η

1 if x ≥ η

we see that
φ(x, t) := e−LtHη(x)

is a subsolution of (4.6), which satisfies moreover

φ(x, t = 0) = Hη(x) ≤ H∗(x) ≤ (ψn)∗(x, t = 0)

Therefore, using a comparison principle for (4.6), we deduce the following lower bound

e−LtHη(x) ≤ ψn(x, t) for all (x, t) ∈ R× [0, 2T0).

Step 2.2: passing to the limit and getting a contradiction
Using our bounds, we can define the semi-relaxed limit

ψ∞ = lim inf
n→+∞ ∗

ψn

which satisfies (up to extract subsequences) with Pn → P∞ = (x∞, t∞) ∈ [−R,R]× [δ, T0]
0 ≤ ψ∞ ≤ 2 on R× [0, 2T0)

ψ∞(P∞) = 0

e−LtHη(x) ≤ ψ∞(x, t) for all (x, t) ∈ R× [0, 2T0).

and passing also to the limit in the equation, we deduce that

∂tψ∞(x, t) ≥
N∑
i=0

∂F

∂Xi
(0, ..., 0)ψ∞(x+ ri, t) on R× [0, 2T0)

Then the strong maximum principle (Proposition 4.1) shows for all k ∈ N that

ψ∞(x∞ + kri0 , t) = 0 for all 0 ≤ t ≤ t∞.
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For k >> 1, this leads to a contradiction

1 = Hη(x∞ + kri0) ≤ ψ∞(x∞ + kri0 , 0) = 0.

We conclude that (4.5) holds true and this ends the proof of the proposition.

We are now ready to give the main result of this section.

Proposition 4.4 (Harnack inequality)
Let F be a function satisfying (ALip), (PLip) and assume that F is C1 over a neighborhood of {0}N+1

in [0, 1]N+1. Assume moreover that

∃ i0 ∈ {1, ..., N} such that ri0 > 0 and
∂F

∂Xi0

(0, ..., 0) > 0.

Let c ∈ R. Then for every ρ > 0 there exists constants κ1 = κ1(ρ, c) > 1 and κ0 = κ0(ρ, c) > 1
such that for any solution u of

cu′(x) = F ((u(x+ ri))i=0,...,N ) on R
u′ ≥ 0

u(−∞) = 0 and u(+∞) = 1.

we have
sup
Bρ(x)

u ≤ κ1 inf
Bρ(x)

u for all x ∈ R.

and
u(x+ r∗) ≤ κ0u(x),

where r∗ = max
i=0,...,N

|ri|.

Proof of Proposition 4.4
Let F̃ be the extension of F on RN+1 given by Lemma 3.2. Then it is easy to check that the
function

u(x, t) := u(x+ ct)

satisfies in the viscosity sense the equation

ut(x, t) = F̃ ((u(x+ ri, t))i=0,...,N ) for all (x, t) ∈ R× (0,+∞)

and
u(x, 0) = u(x).

Let x0 ∈ R such that 1 ≥ u(x0) > 0. Since u is nondecreasing, we have

u(x, 0) ≥ u(x0)H(x− x0),

where H = 1[0,+∞) is the Heaviside function. For ε ∈ (0, 1] that will be fixed later, let ψε = ψ be
the solution given by Lemma 4.2 with initial condition ψε(x, 0) = εH(x) in the sense of (4.4) and
let

v(x, t) := ψε(x− x0, t).

Now, using Proposition 4.3, we deduce that there exists some ε0 ∈ (0, 1] and T0 such that for all
δ ∈ (0, T0) and R > 0 there exists a constant κ = κ(δ,R) > 0 such that if ε ≤ ε0, then

(4.7) v(x, t) ≥ εκ for all (x, t) ∈ [x0 −R, x0 +R]× [δ, T0].
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Case 1: u(x0) ≤ ε0

We now choose
ε = u(x0) > 0

In particular, we have
u(x, 0) ≥ v∗(x, 0) for all x ∈ R.

Using the comparison principle (see [18, Proposition 2.5]), we deduce that

u ≥ v for all (x, t) ∈ R× (0,+∞).

From (4.7), we deduce that

u ≥ κu(x0) on [x0 −R, x0 +R]× [δ, T0].

Because u(x, t) = u(x+ ct), we conclude that

inf
(x,t)∈[x0−R,x0+R]×[δ,T0]

u(x+ ct) ≥ κu(x0).

Now, for any ρ > 0, we can find Rρ > 0 large enough such that

B2ρ(x0) ⊂ BRρ(x0) + ct for all t ∈ [δ, T0].

Therefore, since u is nondecreasing, we deduce that

u(x0 − 2ρ) = inf
x∈B2ρ(x0)

u(x) ≥ inf
(x,t)∈[x0−Rρ,x0+Rρ]×[δ,T0]

u(x+ ct) ≥ κu(x0)

with κ = κ(Rρ).
Case 2: u(x0) > ε0

Then choosing
ε = ε0

we deduce again that
u(x0 − 2ρ) ≥ κε0 ≥ κε0u(x0)

Conclusion
Hence setting

κ1 :=
1

κε0

we see that in both cases 1 and 2, we get

(4.8) u(x0) ≤ κ1u(x0 − 2ρ)

Hence for y := x0 − ρ, we get in particular

sup
Bρ(y)

u ≤ κ1 inf
Bρ(y)

u

Moreover the choice 2ρ := r∗ in (4.8) gives

u(x+ r∗) ≤ κ0u(x) with κ0 := κ1|ρ:=r∗/2

This ends the proof of the proposition.

Because the proofs are similar to the original ones, we now give without proofs two results
(Propositions 4.5 and 4.6) which are direct adaptations of the proofs of Propositions 4.3 and 4.4.
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Proposition 4.5 (Lower bound on a positive segment [δ,R] when ri0 < 0; variant of
Proposition 4.3)
Consider a function F satisfying (ÃLip) such that F|[0,1]N+1 satisfies (PLip). Assume moreover that

F is C1 over a neighborhood of {0}N+1 in [0, 1]N+1 and

∃ i0 ∈ {1, ..., N} such that ri0 < 0 and
∂F

∂Xi0

(0, ..., 0) > 0.

Then there exists ε0 ∈ (0, 1] and T0 > 0 such that for all δ ∈ (0, T0) and R > 0, there exists
κ = κ(δ,R) > 0 such that for every 0 < ε ≤ ε0, the function ψ = ψε given by Lemma 4.2 with
initial conditions (4.4) satisfies

ψε(x, t) ≥ κε for all (x, t) ∈ [δ,R]× [δ, T0].

Based on Proposition 4.5, we can then show the following result.

Proposition 4.6 (Harnack inequality for c < 0 when ri0 < 0; variant of Proposition 4.4)
Let F be a function satisfying (ALip), (PLip) and assume that F is C1 over a neighborhood of {0}N+1

in [0, 1]N+1. Assume moreover that

∃ i0 ∈ {1, ..., N} such that ri0 < 0 and
∂F

∂Xi0

(0, ..., 0) > 0.

Let c ∈ (−∞, 0). Then for every ρ > 0 there exists constants κ1 = κ1(ρ, c) > 1 and κ0 = κ0(ρ, c) > 1
such that for any solution u of

cu′(x) = F ((u(x+ ri))i=0,...,N ) on R
u′ ≥ 0

u(−∞) = 0 and u(+∞) = 1.

we have
sup
Bρ(x)

u ≤ κ1 inf
Bρ(x)

u for all x ∈ R.

and
u(x+ r∗) ≤ κ0u(x),

where r∗ = max
i=0,...,N

|ri|.

Notice that Harnack inequality may fail for c = 0 as shows following remark.

Remark 4.7 (When Harnack inequality fails for c = 0)
i) (A traveling wave equation)
We consider the equation

cu′ = u(x− 1

2
)− u(x) + f(u(x))

For c = 0, we can plug

u(x) :=


0 if x ≤ 0
x if 0 ≤ x ≤ 1

2

1− 1
2e
−2(x− 1

2
) if x ≥ 1

2
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and check that

f(u(x)) = u(x)− u(x− 1

2
) =


0 if x ≤ 0
x if 0 ≤ x ≤ 1

2

1− 1
2e
−2(x− 1

2
) − (x− 1

2) if 1
2 ≤ x ≤ 1

1− 1
2e
−2(x− 1

2
) −
{

1− 1
2e
−2(x−1)

}
if x ≥ 1

which shows that we can take

f(v) :=


v for 0 ≤ v ≤ 1

2
v + 1

2 ln {2(1− v)} for 1
2 ≤ v ≤ 1− 1

2e
−1

(e− 1)(1− v) for 1− 1
2e
−1 ≤ v ≤ 1

which is Lipschitz and satisfies f > 0 = f(0) = f(1) on (0, 1). Moreover f ′(0) = 1 and we can
check that c∗ = 0. This example shows that there is no standard Strong Maximum Principle, and
then no Harnack inequality here for c = 0 = c∗ and ri0 = −1

2 < 0.
ii) (Lack of diffusion in a discrete equation)
Consider the related equation

ut(x, t) = u(x− 1, t)− u(x, t) for (x, t) ∈ R× (0,+∞)

For the initial data

u(x, 0) =


0 if x < 0
1 if x ∈ [0, 1)
0 if x > 1

we get the exact solution

u(x, t) = u(x, 0) =

{
0 if x < 0
tn

n!
e−t if x ∈ n+ [0, 1) with n ∈ N

This example shows clearly that this discrete equation creates no diffusion at all to the left (i.e. no
infinite velocity to the left).

5 Comparison of the minimal velocity c+ with c∗

The main result of this section is the proof of Theorem 1.3 which states that c+ ≥ c∗. Part of our
arguments are inspired by Hamel [24], where some comparisons c+ ≥ c∗ are also obtained under
certain conditions for various (standard) reaction-diffusion equations. We finally show in Lemma
5.2 an example where the inequality is strict: c+ > c∗.

In order to prove Theorem 1.3, we will need the following result.

Lemma 5.1 (Lower bound on the velocity for the linear problem)
Let F be a function satisfying (ALip) and differentiable at {0}N+1. Assume moreover that f(v) =
F (v, ..., v) satisfies

(5.1) f ′(0) =
N∑
i=0

∂F

∂Xi
(0, ..., 0) > 0.
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Let c 6= 0 and assume that there exists a0 > 0 and C0 > 0 such that φ is a solution of

(5.2)



cφ′(x) =
N∑
i=0

∂F

∂Xi
(0, ..., 0)φ(x+ ri) on R

φ′ ≥ 0

φ > 0

1 ≤ φ(x+ a0)

φ(x)
≤ C0 for all x ∈ R.

Then
c ≥ c∗,

where c∗ is given in (1.8).

Proof of Lemma 5.1
Step 0: preliminary
Let a ∈ (0, a0) and let

K∗ = inf E with E = {k ≥ 1 such that φ(x+ a) ≤ kφ(x) for all x ∈ R}.

We have E 6= ∅ because C0 ∈ E. By definition of K∗ ≥ 1, we have

φ(x+ a) ≤ K∗φ(x) for every x ∈ R.

If K∗ = 1, then φ is constant and the first equation of (5.2) gives

0 =
N∑
i=0

∂F

∂Xi
(0, ..., 0) = f ′(0)

which is a contradiction with (5.1). Therefore K∗ > 1, and there exists λ > 0 such that

K∗ = eλa.

Again by definition of K∗, for every ε > 0, there exists xε ∈ R such that

φ(xε + a) > (K∗ − ε)φ(xε).

Setting

φε(x) :=
φ(x+ xε)

φ(xε)
with φε(0) = 1

we get
φε(x+ a) ≤ K∗φε(x) and φε(a) > (K∗ − ε)φε(0).

Step 1: passing to limit ε→ 0
Since c 6= 0, we can bound both φε and φ′ε on any bounded interval uniformly w.r.t. ε. Therefore,
using Ascoli’s Theorem, we deduce that φε converges to some φ0 locally uniformly and φ0 satisfies
(in the viscosity sense)

(5.3)



cφ′0(x) =
N∑
i=0

∂F

∂Xi
(0, ..., 0)φ0(x+ ri) on R

φ′0 ≥ 0

φ0(x+ a) ≤ K∗φ0(x)

φ0(0) = 1

φ0(a) ≥ K∗φ0(0).
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Now, let w(x) = K∗φ0(x)− φ0(x+ a). Then from (5.3), we deduce that w satisfies
cw′(x) =

N∑
i=0

∂F

∂Xi
(0, ..., 0)w(x+ ri) on R

w ≥ 0 on R
w(0) = 0.

Then using the half strong maximum principle [1, Lemma 6.1], we get that w(x) = 0 for all cx ≤ 0,
i.e.

K∗φ0(x) = φ0(x+ a) for all cx ≤ 0.

Step 2: establishing c ≥ c∗
Because of estimate (5.3), we see that φ0 > 0. Hence we can define

φ0,n(x) :=
φ0(x− cn)

φ0(−cn)
.

Then φ0,n(0) = 1 and

K∗φ0,n(x) = φ0,n(x+ a) for all c(x− cn) ≤ 0.

Step 2.1: passing to the limit n→ +∞
As before, we can pass to the limit φ0,n → φ0,∞ satisfying

cφ′0,∞(x) =

N∑
i=0

∂F

∂Xi
(0, ..., 0)φ0,∞(x+ ri) on R

φ′0,∞ ≥ 0

φ0,∞(0) = 1.

with moreover
K∗φ0,∞(x) = φ0,∞(x+ a) for all x ∈ R.

Step 2.2: conclusion
Let

z(x) =
φ0,∞(x)

eλx
≥ 0

which satisfies z ∈ C1 and

(5.4) cz′(x) + cλz(x) =
N∑
i=0

∂F

∂Xi
(0, ..., 0)eλriz(x+ ri) on R

and
z(x+ a) = z(x)

Let x0 be a minimum of the a-periodic function z ≥ 0. Assume by contradiction that z(x0) = 0.
Then this implies

N∑
i=1

∂F

∂Xi
(0, ..., 0)eλriz(x0 + ri) = 0.

Case 1: there exists some index i0 ∈ {1, . . . , N} such that ri0 6= 0 and ∂F
∂Xi0

(0, . . . , 0) > 0

Since ∂F
∂Xi

(0, ..., 0) ≥ 0 for all i = 1, ..., N , we deduce that

z(x0 + ri0) = 0.
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Repeating the same process, we get that z = 0 on x0 + ri0N. Since z is a-periodic, then z = 0 on
x0 + ri0N + aZ ≡ x0 + a(

ri0
a N + Z).

Since a ∈ (0, a0) is arbitrary, then we can choose a ∈ (0, a0) such that
ri0
a ∈ R\Q. Therefore,

x0 + a(
ri0
a N + Z) is dense in R. By continuity of z, this implies

z = 0 on R,

which is a contradiction with z(0) = 1.
Therefore z ≥ z(x0) > 0 and we get

cλz(x0) =
∂F

∂X0
(0, ..., 0)eλr0z(x0) +

N∑
i=1

∂F

∂Xi
(0, ..., 0)eλriz(x0 + ri)

≥ ∂F

∂X0
(0, ..., 0)eλr0z(x0) +

N∑
i=1

∂F

∂Xi
(0, ..., 0)eλriz(x0)

= z(x0)P (λ) with P (λ) :=

N∑
i=0

∂F

∂Xi
(0, ..., 0)eλri .

Hence

c ≥ P (λ)

λ
≥ inf

λ′>0

P (λ′)

λ′
=: c∗.

Case 2: we have ∂F
∂Xi

(0, . . . , 0) = 0 for all i ∈ {1, . . . , N}
Then we deduce from (5.4) that z satisfies

cz′ = kz with k := f ′(0)− cλ with
∂F

∂X0
(0, . . . , 0) = f ′(0) > 0

Because c 6= 0 and z is a-periodic with z(0) = 1, we deduce that z is constant and that k = 0, i.e.

c =
f ′(0)

λ
> c∗ := inf

λ′>0

P (λ′)

λ′
= 0

Hence in Cases 1 and 2, we get c ≥ c∗ and this ends the proof of the proposition.

Proof of Theorem 1.3
Under assumptions (ALip) and (PC1), let c+ given by Theorem 1.1. We want to show that c+ ≥ c∗
with c∗ given in (1.8).
We now introduce the following condition

(5.5) ∃ i0 ∈ {1, ..., N} such that ri0 > 0 and
∂F

∂Xi0

(0, ..., 0) > 0

and we will distinguish the cases where this assumption is satisfied or not.

Step 1: proving that c+ ≥ c∗ under the assumption (5.5)
Let c ≥ c+, and let (c, φ) be a solution of (1.6). Because of assumption (5.5), we know that Harnack
inequality holds true (see Proposition 4.4). Hence we deduce that φ > 0.

Step 1.1: φ′(x)
φ(x) is globally bounded when c 6= 0

We have

c
φ′(x)

φ(x)
=

1

φ(x)
F ((φ(x+ ri))i=0,...,N ).
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Using F (0, . . . , 0) = 0, the fact that F is Lipschitz with

|F (X)| ≤ L max
i=0,...,N

|Xi|

and the monotonicity of φ with |ri| ≤ r∗, we deduce that

φ′(x)

φ(x)
≤ L

|c|
φ(x+ r∗)

φ(x)
≤ Lκ0

|c|
=:M

where the constant κ0 > 1 comes from the following Harnack inequality (see Proposition 4.4)

φ(x+ r∗) ≤ κ0φ(x)

Hence we get the bound

0 ≤ φ′(x)

φ(x)
≤M.

Step 1.2: proving that c ≥ c∗ and conclusion
Gven a sequence xn → −∞ we set

φn(x) :=
φ(x+ xn)

φ(xn)
≥ 0

which satisfies

cφ′n(x) =
1

εn
F (εn(φn(x+ ri))i=0,...,N ) on R, with εn := φ(xn)→ 0

and
φn(x+ r∗) ≤ κ0φn(x)

Moreover, because we have φn(0) = 1 with 0 ≤ φ′n(x)
φn(x) ≤M this implies the bounds

0 ≤ φn(x) ≤ max(1, eMx), 0 ≤ φ′n(x) ≤Mφn(x)

Now, using Ascoli’s Theorem (and some classical diagonal argument), we deduce that φn converges
locally uniformly to some φ∞ which satisfies (at least in the viscosity sense)

cφ′∞(x) =

N∑
i=0

∂F

∂Xi
(0, ..., 0)φ∞(x+ ri) on R

φ′∞ ≥ 0

φ∞(0) = 1

φ∞(x+ r∗) ≤ κ0φ∞(x)

where the third three lines imply in particular that

φ∞ > 0 on R

Then using Lemma 5.1, we deduce that
c ≥ c∗.

Because this is true for every c ≥ c+ with c 6= 0, we deduce that c+ ≥ c∗.
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Step 2: proving c+ ≥ c∗ when assumption (5.5) is not satisfied
Then we have

∂F

∂Xi
(0, . . . , 0) = 0 for all ri > 0

Because by assumption we have

0 < f ′(0) =
∑

i=0,...,N

∂F

∂Xi
(0, . . . , 0) with

∂F

∂Xi
(0, . . . , 0) ≥ 0 for all i 6= 0

we deduce that

c∗ = inf
λ>0

P (λ)

λ
≤ 0

Assume by contradiction that

(5.6) c+ < c∗ ≤ 0

Up to increase the integer N ≥ 1, we can always assume that there exists some index i1 ∈ {1, . . . , N}
such that

ri1 < 0

Let (c+, φ+) be a solution of (1.6) given by Theorem 1.1. Using the half strong maximum principle
[1, Lemma 6.1] with c+ < 0, we get that

φ+(x0) = 0 implies φ+(x) = 0 for all x ≥ x0

Hence we deduce that φ+ > 0. Now let ε > 0 and let us define the function

Fε(X0, ..., XN ) := F (X0, ..., XN ) + ε(Xi1 −X0).

Because φ+ is nondecreasing, we see that φ+ > 0 satisfies

c+(φ+)′(x) = F ((φ+(x+ ri))i=0,...,N ) ≥ Fε((φ+(x+ ri))i=0,...,N ).

Then we can apply Proposition 2.5 which shows the existence of a nondecreasing solution (c+, φε)
of 

c+φ′ε = Fε((φε(x+ ri))i=0,...,N ) on R
φ′ε ≥ 0
φε(−∞) = 0, φε(+∞) = 1

Because

c+ < 0 and
∂Fε
∂Xi1

(0, . . . , 0) ≥ ε > 0 with ri1 < 0

we can apply Harnack inequality (Proposition 4.6). Proceeding exactly as in Step 1, we get a
function φ∞ solution of 

c+φ′∞(x) =
N∑
i=0

∂Fε
∂Xi

(0, ..., 0)φ∞(x+ ri) on R

φ′∞ ≥ 0

φ∞(0) = 1

φ∞(x+ r∗) ≤ κ0φ∞(x)

which implies again from Lemma 5.1 that

0 > c+ ≥ cε := inf
λ>0

Pε(λ)

λ
with Pε(λ) = P (λ) + ε(eri1λ − 1)
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In the limit ε→ 0+, we recover
c+ ≥ lim

ε→0+
c∗ε = c∗

which is in contradiction with our assumption (5.6). Hence (5.6) is false, and this shows that

c+ ≥ c∗

Finally we have shown this result assuming or not assumption (5.5). Hence the result holds in all
cases and this ends the proof of the theorem.

Now, we give the proof of Proposition 1.4, where we show that c+ ≤ c∗ under a KPP type
condition.
Proof of Proposition 1.4
The proof is quite simple. Consider any c > c∗ = infλ>0

P (λ)
λ and choose some λ0 > 0 such that we

still have

c > c(λ0) :=
P (λ0)

λ0
≥ c∗

We also set

φ0(x) := eλ0x and G(X) :=

N∑
i=0

∂F

∂Xi
(0, ..., 0)Xi.

This shows that

cφ′0 ≥ c(λ0)φ′0 = G((φ0(x+ ri))i=0,...,N ) ≥ F ((φ0(x+ ri))i=0,...,N )

Hence φ0 is a supersolution of the equation with velocity c. This is also the case of

φ̄0 := min(φ0, 1)

which is then a positive nondecreasing supersolution. Then we can apply Proposition 2.5 which
shows the existence of a nondecreasing solution φ of

cφ′ = F ((φ(x+ ri))i=0,...,N ) on R
φ′ ≥ 0
φ(−∞) = 0, φ(+∞) = 1

This implies by definition of c+ that
c+ ≤ c

Because this is true for any c > c∗, we deduce that

c+ ≤ c∗

and this ends the proof of the proposition.

Now, we give an example of nonlinearity where we have c+ > c∗.

Lemma 5.2 (Example with c+ > c∗)
Consider the function F : [0, 1]3 → R defined as

F (X0, X−1, X1) := g(X1) + g(X−1)− 2g(X0) + f(X0),

with r0 = 0, r±1 = ±1 and f, g : [0, 1] → R are C1 over a neighborhood of 0, Lipschitz on [0, 1]
and satisfying 

f(0) = f(1) = 0

f > 0 on (0, 1)

f ′(0) > 0

and


g′(0) = 0

g(1) = 1 + g(0)

g′ ≥ 0.

33



Let c+ given by Theorem 1.1, then
c+ > c∗ = 0,

where c∗ is defined in (1.8).

An example of such g is g(x) = x− 1
2π sin(2πx).

Proof of Lemma 5.2
Since g′(0) = 0 and f ′(0) > 0, then P (λ) = f ′(0) > 0. Thus we get that c∗ = infλ>0

P (λ)
λ = 0. By

Theorem 1.3, we have that c+ ≥ c∗ = 0. We want to show that c+ > c∗.
Assume to the contrary that c+ = 0 and let φ be a solution of (1.6) with F replaced by F 0.

Using the equivalence between the viscosity solution and almost everywhere solutions (see Lemma
2.3), we deduce that φ is an almost everywhere solution of

(5.7) 0 = F ((φ(z + ri))i=0,...,N ).

That is there exists a set N of measure zero such that for every z /∈ N , equation (5.7) holds true.
Let N0 = ∪k∈Z(N + k) and choose z0 ∈ R\N0. Then equation (5.7) holds true for every z0 + k

with k ∈ Z. Hence

(5.8) g(φ(z0 + k+ 1)) + g(φ(z0 + k− 1))− 2g(φ(z0 + k)) = −f(φ(z0 + k)) ≤ 0 for every k ∈ Z.

Let h be the piecewise affine function which is affine on each interval [k, k + 1] and satisfying
h(z0 + k) = g(φ(z0 + k)) with k ∈ Z. Thus, it is easy to conclude using (5.8) that h is concave.
Moreover, h is bounded because g is bounded on [0, 1] and 0 ≤ φ ≤ 1. Therefore, h is constant.
This implies that

g(φ(z0)) = g(φ(z0 + k)) = const for all k ∈ Z.

Moreover, since g′ ≥ 0, φ(−∞) = 0 and φ(+∞) = 1, we conclude that g = const on [0, 1], which
is a contradiction with g(1) = 1+g(0). Hence, we get c+ > 0 = c∗. This ends the proof of the lemma.

6 Properties of the minimal velocity

This section is decomposed in two subsections. In the first subsection, we show Corollary 6.1 which
gives sufficient conditions to insure that c+ ≥ 0. In the second subsection, we give the proof of
Proposition 1.5 which shows an example where c+ < 0. Finally, using this example we show the
instability of the minimal velocity by L∞ approximation of the nonlinearity F . This is the proof
of Proposition 1.2.

6.1 Nonnegativity of the minimal velocity c+

Let us now give a corollary of Theorem 1.3.

Corollary 6.1 (Non-negative c+ for particular F )
Consider a function F satisfying (ALip) and (PC1). Let c+ given by Theorem 1.1. Then we have
c+ ≥ c∗ ≥ 0, if one of the three following conditions i), ii) or iii) holds true:

i) (Reflection symmetry of F )
Let X = (Xi)i∈{0,...,N} ∈ [0, 1]N+1. Assume that for all i ∈ {0, ..., N} there exists i ∈ {0, ..., N} such
that ri = −ri; and

F (X) = F (X) for all X ∈ [0, 1]N+1,
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where
Xi = Xi for i ∈ {0, ..., N}.

ii) (All the ri’s “shifts” are non-negative)
Assume that ri ≥ 0 for all i ∈ {0, ..., N}.

iii) (Strict monotonicity)
Let

I =
{
i ∈ {1, ..., N} such that there exists i ∈ {1, ..., N} with ri = −ri

}
and assume that

(6.1)
∂F

∂X0
(0) +

∑
i∈I

min

(
∂F

∂Xi
(0),

∂F

∂Xi

(0)

)
> 0.

Notice that in the first version of the manuscript [2], we gave a direct proof of Corollary 6.1,
without using Theorem 1.3 that was not available at that time. The proof there was done using
extension lemmata, joint to approximation procedures (only close to the root φ(+∞) = 1) as in
our construction of c+ in the proof of Theorem 1.1.

Notice that because of the monotonicity of F in Xj for j 6= 0, condition (6.1) is satisfied if

∂F

∂X0
(0) > 0.

Moreover, if

(6.2) I = {1, ..., N} and
∂F

∂Xi
(0) =

∂F

∂Xi

(0) for all i ∈ I,

then condition (6.1) is equivalent to f ′(0) > 0. In particular, under condition i) property (6.2)
holds true. This shows that condition iii) is more general than condition i).

Remark that if we replace (PC1) by (PLip) assuming for instance i) or ii), we do not know if
c+ ≥ 0.

Proof of Corollary 6.1
Step 1: Study of c∗

We first show that c∗ ≥ 0 in each case.
Step 1.1: case i)
The reflection symmetry shows that

∂F

∂Xī

(0) =
∂F

∂Xi
(0) for all i = 0, . . . , N

and then

P (λ) =
∑

i=0,...,N

∂F

∂Xi
(0) · eriλ =

∂F

∂X0
(0) +

∑
i=1,...,N

∂F

∂Xi
(0) · cosh(riλ) ≥

∑
i=0,...,N

∂F

∂Xi
(0) = f ′(0) > 0

Hence

c∗ := inf
λ>0

P (λ)

λ
≥ 0
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Step 1.2: case ii)
For the computation of P (λ) we can assume that ri ≥ 0 for all indices i = 0, . . . , N . Then we have

P (λ) =
∑

i=0,...,N

∂F

∂Xi
(0) · eriλ ≥

∑
i=0,...,N

∂F

∂Xi
(0) = f ′(0) > 0

and again
c∗ ≥ 0

Step 1.3: case iii)
We have

P (λ) =
∑

i=0,...,N

∂F

∂Xi
(0) · eriλ ≥ ∂F

∂X0
(0) +

∑
i∈I

min

(
∂F

∂Xi
(0),

∂F

∂Xi

(0)

)
cosh(riλ) =: Q(λ)

which implies
P (λ) ≥ Q(λ) ≥ Q(0) > 0

and again
c∗ ≥ 0

Step 2: conclusion
Using Theorem 1.3, we deduce that c+ ≥ c∗ ≥ 0, which ends the proof of the corollary.

6.2 Instability of the minimal velocity c+

In this subsection, we show that the minimal velocity c+ given in Theorem 1.1 is unstable in the
sense of Proposition 1.2. Before proving proving it, we give an example of a nonlinearity F for
which the associated minimal velocity is negative (Proposition 1.5).

Proof of Proposition 1.5
The aim is to construct a function F satisfying (ALip) and (PC1) such that the associated minimal
velocity satisfies c+ < 0. To this end, we will construct a function f ∈ Lip([0, 1]), which is linear in
a neighborhood of zero with f ′(0) > 0, such that there exists a couple (c, φ) with c < 0 solution of

(6.3)


cφ′(x) = φ(x− 1)− φ(x) + f(φ(x)) on R
φ′ ≥ 0

φ(−∞) = 0 and φ(+∞) = 1.

Let c = −µ with 0 < µ < 1 and

φ(x) =


1

2
eγx on (−∞, 0]

1− 1

2
e−γx on [0,+∞)

with γ > 0. We claim that φ ∈ C1(R) and (−µ, φ) solves
0 < φ(x)− φ(x− 1)− µφ′(x) on R
φ′ > 0

φ(−∞) = 0 and φ(+∞) = 1,

which is possible to check for 0 < γ << 1.
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Therefore, it is sufficient to define the function f as

f(φ(x)) := φ(x)− φ(x− 1)− µφ′(x) > 0 for all x ∈ R.

Notice that, when x→ +∞, φ(+∞) = 1 and φ′(x)→ 0, thus f(1) = 0. Similarly, we have f(0) = 0.
Moreover, since φ ∈ C1,1(R), we have that f ∈ Lip((0, 1)). In fact, by a direct tedious calculation,
one can deduce that

f(v) =



(1− e−γ − µγ)v for v ∈
[
0,

1

2

]
1 + (1 + µγ)(v − 1) +

e−γ

4(v − 1)
for v ∈

[
1

2
, 1− 1

2
e−γ
]

(1− eγ + µγ)(v − 1) for v ∈
[
1− 1

2
e−γ , 1

]
,

and this implies that f ∈ Lip([0, 1]) and 1 > f ′(0) > 0. We can even check that f is concave and C1

except at the point v = 1
2 , where it is neither concave nor C1. This ends the proof of the proposition.

Remark 6.2 Notice that to get more regular nonlinearities, one can consider

(6.4) fε(x) :=
((
φ(·)− φ(· − 1)− µφ′(·)

)
? ρε

)
(x),

where ρε satisfies ρε ≥ 0, ρε(x) = 1
ερ(xε ) (ρ is a mollifier) and supp ρε ⊂ Bε(0). However, in this

case, ρε ? φ is a solution of (6.3), with f replaced by fε, and then fε ∈ C∞([0, 1]) with f ′ε(0) > 0.

Now, we give the proof of the instability result, namely Proposition 1.2.
Proof of Proposition 1.2
Let us consider the function F given in the proof of Proposition 1.5, namely for X = (X0, . . . , XN )

(6.5)


F (X) = F (X0, X1) := X1 −X0 + f(X0) with r0 = 0, r1 = −1, N = 1

f(v) = f ′(0) · v for v ∈ [0, 1
2 ], with f ′(0) > 0

satisfying (ALip) and (PC1) with associated minimal velocity c+
F := c+ satisfying

c+
F < 0

Our goal is to build a sequence of functions F̂δ satisfying (ALip) and (PC1) with a minimal velocity
c+

F̂δ
≥ 0 such that

F̂δ → F in L∞([0, 1]N+1) as δ → 0+

which will prove that
lim inf
δ→0

c+

F̂δ
> c+

F .

We first construct Fδ, and then F̂δ.

Step 1: construction of Fδ
For X = (X0, ..., XN ) ∈ [0, 1]N+1 and δ > 0 small, define the function

Fδ(X) = F (X)− f(X0)− fδ(X0),
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where

fδ(v) =

{
max

(
f(δ) + L0(v − δ), 0

)
on [0, δ]

f on [δ, 1],

with a constant L0 > 0 satisfying L0 > max(Lip(f), 1).
By construction of fδ, we clearly have

‖Fδ − F‖L∞ = ‖f − fδ‖L∞ → 0 as δ → 0.

Step 2: rescaling and existence of c+
Fδ

We now introduce the root 0δ of fδ

0δ := δ − f(δ)

L0
> 0,

which satisfies
fδ > 0 = fδ(0δ) = fδ(1) on (0δ, 1)

Since Fδ satisfies (ALip) and (PC1) with [0, 1]N+1 replaced by [0δ, 1]N+1, it is natural to rescale Fδ
in

F̂δ((Xi)i=0,...,N ) := Fδ((0δ + (1− 0δ)Xi)i=0,...,N )

which now satisfies (ALip) and (PC1) on [0, 1]N+1. Hence we can apply Theorem 1.1, and deduce
that there exists a minimal velocity c+

F̂δ
.

Now using (6.5), notice that

∂F̂δ
∂X1

(0) = (1− 0δ) > 0,
∂F̂δ
∂X1

(0) = (1− 0δ)(−1 + L0) > 0

Moreover, we can apply Theorem 1.3 which gives

c+

F̂δ
≥ c∗

F̂δ
:= inf

λ>0

P (λ)

λ
with P (λ) :=

∑
i=0,1

∂F̂δ
∂Xi

(0)eriλ ≥ 0

ie
c+

F̂δ
≥ 0 > c+

F

Finally, we deduce that (using for instance the uniform continuity of F )

‖F̂δ − F‖L∞ → 0 as δ → 0

which ends the proof of the proposition.
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