Borel summability of the $\frac 1N$-expansion in quartic $\text{O}(N)$-vector models
Résumé
We consider a quartic O(N)-vector model. Using the Loop Vertex Expansion, we prove the Borel summability in 1/N along the real axis of the partition function and of the connected correlations of the model. The Borel summability holds uniformly in the coupling constant, as long as the latter belongs to a cardioid like domain of the complex plane, avoiding the negative real axis.
Domaines
Physique mathématique [math-ph]Origine | Fichiers produits par l'(les) auteur(s) |
---|