Neural Network Precision Tuning Using Stochastic Arithmetic
Résumé
Neural networks can be costly in terms of memory and execu-
tion time. Reducing their cost has become an objective, especially when
integrated in an embedded system with limited resources. A possible
solution consists in reducing the precision of their neurons parameters.
In this article, we present how to use auto-tuning on neural networks to
lower their precision while keeping an accurate output. To do so, we use a
floating-point auto-tuning tool on different kinds of neural networks. We
show that, to some extent, we can lower the precision of several neural
network parameters without compromising the accuracy requirement.
Domaines
Informatique [cs]Origine | Fichiers produits par l'(les) auteur(s) |
---|