New perspectives in smoothing : minimax estimation of the mean and principal components of discretized functional data. - Archive ouverte HAL
Article Dans Une Revue The Graduate Journal of Mathematics Année : 2022

New perspectives in smoothing : minimax estimation of the mean and principal components of discretized functional data.

Résumé

Functional data analysis has been the subject of increasing interest over the past decades. Most existing theoretical contributions assume that the curves are fully observed, whereas in practice the data are observed on a finite grid and may be affected by noise. To account for the presence of noise and discretization, it is common to smooth the data. The purpose of this paper is to review some of the recent works studying the influence of the observation scheme for estimating the mean and principal components. Some of this work questions the need to smooth the data when the observation grid is fixed.
Fichier principal
Vignette du fichier
SmoothingRochev2.pdf (1.32 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03779051 , version 1 (16-09-2022)

Identifiants

  • HAL Id : hal-03779051 , version 1

Citer

Angelina Roche. New perspectives in smoothing : minimax estimation of the mean and principal components of discretized functional data.. The Graduate Journal of Mathematics, 2022, Special issue in Probability and Statistics, 7 (2), pp.95 - 107. ⟨hal-03779051⟩
115 Consultations
75 Téléchargements

Partager

More