Cooperation-based search of global optima - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Cooperation-based search of global optima

Résumé

A new cooperation-based metaheuristic is proposed for searching global optima of functions. It is based on the assumption that the dynamics of the objective function does not change significantly between iterations. It relies on a local search process coupled with a cooperative semi-local search process. Its performances are compared against four other metaheuristics on unconstrained mono-objective optimization problems. Results show that the proposed metaheuristic is able to find the global minimum of the tested functions faster than the compared methods while reducing the number of iterations and the number of calls of the objective function.
Fichier principal
Vignette du fichier
Cooperation_based_search_of_global_optima_OLA_2022__Final_.pdf (316.05 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03778834 , version 1 (16-09-2022)

Identifiants

Citer

Damien Vergnet, Elsy Kaddoum, Nicolas Verstaevel, Frédéric Amblard. Cooperation-based search of global optima. 5th International Conference in Optimization and Learning (OLA 2022), Jul 2022, Syracuse, Italy. pp.105-116, ⟨10.1007/978-3-031-22039-5_9⟩. ⟨hal-03778834⟩
111 Consultations
95 Téléchargements

Altmetric

Partager

More