Conductance-based phenomenological non-spiking model: a dimensionless and simple model that reliably predicts the effects of conductance variations on non-spiking neuronal dynamics - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Conductance-based phenomenological non-spiking model: a dimensionless and simple model that reliably predicts the effects of conductance variations on non-spiking neuronal dynamics

Résumé

The modeling of single neurons has proved to be an indispensable tool in deciphering the mechanisms underlying neural dynamics and signal processing. In that sense, two types of single-neuron models are extensively used: the conductance-based models (CBMs) and the so-called 'phenomenological' models, which are often opposed in their objectives and their use. Indeed, the first type aims to describe the biophysical properties of the neuron cell membrane that underlie the evolution of its potential, while the second one describes the macroscopic behavior of the neuron without taking into account all its underlying physiological processes. Therefore, CBMs are often used to study 'low-level' functions of neural systems, while phenomenological models are limited to the description of 'high-level' functions. In this paper, we develop a numerical procedure to endow a dimensionless and simple phenomenological nonspiking model with the capability to describe the effect of conductance variations on non-spiking neuronal dynamics with high accuracy. The procedure allows to determine a relationship between the dimensionless parameters of the phenomenological 1 model and the maximal conductances of CBMs. In this way, the simple model combines the biological plausibility of CBMs with the high computational efficiency of phenomenological models, and thus may serve as a building block for studying both 'high-level' and 'low-level' functions of non-spiking neural networks.
Fichier principal
Vignette du fichier
manuscript_CB_phenomenological_model.pdf (11.06 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03778396 , version 1 (15-09-2022)

Identifiants

  • HAL Id : hal-03778396 , version 1

Citer

Loïs Naudin, Laetitia Raison-Aubry, Laure Buhry. Conductance-based phenomenological non-spiking model: a dimensionless and simple model that reliably predicts the effects of conductance variations on non-spiking neuronal dynamics. 2022. ⟨hal-03778396⟩
74 Consultations
80 Téléchargements

Partager

More