ASR-Generated Text for Language Model Pre-training Applied to Speech Tasks - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

ASR-Generated Text for Language Model Pre-training Applied to Speech Tasks

Résumé

We aim at improving spoken language modeling (LM) using very large amount of automatically transcribed speech. We leverage the INA (French National Audiovisual Institute 1) collection and obtain 19GB of text after applying ASR on 350,000 hours of diverse TV shows. From this, spoken language models are trained either by fine-tuning an existing LM (FlauBERT 2) or through training a LM from scratch. New models (FlauBERT-Oral) are shared with the community and evaluated for 3 downstream tasks: spoken language understanding, classification of TV shows and speech syntactic parsing. Results show that FlauBERT-Oral can be beneficial compared to its initial FlauBERT version demonstrating that, despite its inherent noisy nature, ASR-generated text can be used to build spoken language models.
Fichier principal
Vignette du fichier
2207.01893.pdf (183.55 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03770506 , version 1 (06-09-2022)

Identifiants

Citer

Valentin Pelloin, Franck Dary, Nicolas Hervé, Benoît Favre, Nathalie Camelin, et al.. ASR-Generated Text for Language Model Pre-training Applied to Speech Tasks. Interspeech 2022, Sep 2022, Incheon, South Korea. ⟨hal-03770506⟩
133 Consultations
185 Téléchargements

Altmetric

Partager

More