Using ASR-Generated Text for Spoken Language Modeling - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Using ASR-Generated Text for Spoken Language Modeling

Résumé

This papers aims at improving spoken language modeling (LM) using very large amount of automatically transcribed speech. We leverage the INA (French National Audiovisual Institute 1) collection and obtain 19GB of text after applying ASR on 350,000 hours of diverse TV shows. From this, spoken language models are trained either by fine-tuning an existing LM (FlauBERT 2) or through training a LM from scratch. The new models (FlauBERT-Oral) are shared with the community 3 and are evaluated not only in terms of word prediction accuracy but also for two downstream tasks: classification of TV shows and syntactic parsing of speech. Experimental results show that FlauBERT-Oral is better than its initial FlauBERT version demonstrating that, despite its inherent noisy nature, ASR-Generated text can be useful to improve spoken language modeling.
Fichier principal
Vignette du fichier
2022.bigscience-1.2.pdf (210.59 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03770460 , version 1 (06-09-2022)

Identifiants

Citer

Nicolas Hervé, Valentin Pelloin, Benoît Favre, Franck Dary, Antoine Laurent, et al.. Using ASR-Generated Text for Spoken Language Modeling. Proceedings of BigScience Episode #5 -- Workshop on Challenges & Perspectives in Creating Large Language Models, May 2022, virtual+Dublin, France. pp.17-25, ⟨10.18653/v1/2022.bigscience-1.2⟩. ⟨hal-03770460⟩
65 Consultations
64 Téléchargements

Altmetric

Partager

More