Measure of maximal entropy for finite horizon Sinai billiard flows
Résumé
Using recent work of Carrand on equilibrium states for the billiard map, and bootstrapping via a "leapfrogging" method from a previous article of Baladi and Demers, we construct the unique measure of maximal entropy for two-dimensional finite horizon Sinai (dispersive) billiard flows (and show it is Bernoulli), assuming that the topological entropy of the flow is strictly larger than s_0 log 2 where 0
Domaines
Systèmes dynamiques [math.DS]Viviane Baladi : Connectez-vous pour contacter le contributeur
https://hal.science/hal-03768858
Soumis le : lundi 5 septembre 2022-08:25:49
Dernière modification le : mercredi 30 octobre 2024-13:34:14
Citer
Viviane Baladi, Jérôme Carrand, Mark Demers. Measure of maximal entropy for finite horizon Sinai billiard flows. 2022. ⟨hal-03768858⟩
Collections
22
Consultations
0
Téléchargements