Measure of maximal entropy for finite horizon Sinai billiard flows - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Measure of maximal entropy for finite horizon Sinai billiard flows

Résumé

Using recent work of Carrand on equilibrium states for the billiard map, and bootstrapping via a "leapfrogging" method from a previous article of Baladi and Demers, we construct the unique measure of maximal entropy for two-dimensional finite horizon Sinai (dispersive) billiard flows (and show it is Bernoulli), assuming that the topological entropy of the flow is strictly larger than s_0 log 2 where 0

Dates et versions

hal-03768858 , version 1 (05-09-2022)

Identifiants

Citer

Viviane Baladi, Jérôme Carrand, Mark Demers. Measure of maximal entropy for finite horizon Sinai billiard flows. 2022. ⟨hal-03768858⟩
22 Consultations
0 Téléchargements

Altmetric

Partager

More