Sharp large time behaviour in N -dimensional reaction-diffusion equations of bistable type - Archive ouverte HAL
Article Dans Une Revue Journal of Differential Equations Année : 2022

Sharp large time behaviour in N -dimensional reaction-diffusion equations of bistable type

Résumé

We study the large time behaviour of the reaction-diffsuion equation ∂ t u = ∆u + f (u) in spatial dimension N , when the nonlinear term is bistable and the initial datum is compactly supported. We prove the existence of a Lipschitz function s ∞ of the unit sphere, such that u(t, x) converges uniformly in R N , as t goes to infinity, to U c * |x| − c * t + N − 1 c * lnt + s ∞ x |x| , where U c * is the unique 1D travelling profile. This extends earlier results that identified the locations of the level sets of the solutions with o t→+∞ (t) precision, or identified precisely the level sets locations for almost radial initial data.
Fichier principal
Vignette du fichier
article_v4_soumis_arxiv.pdf (309.1 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03767934 , version 1 (02-09-2022)

Identifiants

Citer

Jean-Michel Roquejoffre, Violaine Roussier-Michon. Sharp large time behaviour in N -dimensional reaction-diffusion equations of bistable type. Journal of Differential Equations, 2022, 339, pp.134-151. ⟨10.1016/j.jde.2022.07.043⟩. ⟨hal-03767934⟩
71 Consultations
47 Téléchargements

Altmetric

Partager

More