Entropy-Based Discovery of Summary Causal Graphs in Time Series
Résumé
This study addresses the problem of learning a summary causal graph on time series with potentially different sampling rates. To do so, we first propose a new causal temporal mutual information measure for time series. We then show how this measure relates to an entropy reduction principle that can be seen as a special case of the probability raising principle. We finally combine these two ingredients in PC-like and FCI-like algorithms to construct the summary causal graph. There algorithm are evaluated on several datasets, which shows both their efficacy and efficiency.