Synthesis of a Starchy Photosensitive Material for Additive Manufacturing of Composites Using Digital Light Processing - Archive ouverte HAL
Article Dans Une Revue Molecules Année : 2022

Synthesis of a Starchy Photosensitive Material for Additive Manufacturing of Composites Using Digital Light Processing

Résumé

In this study, digital light processing (DLP) was used to achieve 3D-printed composite materials containing photosensitive resin blended with starch and hemp fibers. The synthesis of 3D-printed composites was performed without heating, according to various material combinations ranging from pure photosensitive resin to a mixture of three phases, including resin, starch, and hemp fibers, with the weight content for each reinforcing phase reaching up to a third of the formulation. The morphology, composition, and structure of the 3D-printed composites were assessed using infrared spectroscopy, laser granulometry, X-ray diffraction, and optical and scanning electron microscopy. In addition, thermal behavior and mechanical performance were studied using calorimetry, differential scanning calorimetry, and tensile testing combined with high-speed optical imaging. The results showed that the post-curing step is a leading factor for improving the mechanical performance of the 3D-printed composites. In addition, hemp fiber or starch did not alter the tensile strength. However, the largest reinforcing effect in terms of stiffness improvement was obtained with starch. Additionally, starchy composites demonstrated the strongest dependence of heat capacity on operating temperature.
Fichier principal
Vignette du fichier
2022-Molecules.pdf (8.88 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03762374 , version 1 (27-08-2022)

Licence

Identifiants

Citer

Sofiane Guessasma, Sofiane Belhabib, Ferhat Benmahiddine, Ameur El Amine Hamami, Sylvie Durand. Synthesis of a Starchy Photosensitive Material for Additive Manufacturing of Composites Using Digital Light Processing. Molecules, 2022, 27 (17), pp.5375. ⟨10.3390/molecules27175375⟩. ⟨hal-03762374⟩
120 Consultations
224 Téléchargements

Altmetric

Partager

More