Invariants of links and 3-manifolds that count graph configurations - Archive ouverte HAL
Ouvrages Année : 2024

Invariants of links and 3-manifolds that count graph configurations

Christine Lescop

Résumé

We present ways of counting configurations of uni-trivalent Feynman graphs in 3-manifolds in order to produce invariants of these 3-manifolds and of their links, following Gauss, Witten, Bar-Natan, Kontsevich and others. We first review the construction of the simplest invariants that can be obtained in our setting. These invariants are the linking number and the Casson invariant of integer homology 3-spheres. Next we see how the involved ingredients, which may be explicitly described using gradient flows of Morse functions, allow us to define a functor on the category of framed tangles in rational homology cylinders. Finally, we describe some properties of our functor, which generalizes both a universal Vassiliev invariant for links in the ambient space and a universal finite type invariant of rational homology 3-spheres.
Fichier principal
Vignette du fichier
2205_WBLN_Lescop.pdf (551.86 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03758971 , version 1 (23-08-2022)

Identifiants

Citer

Christine Lescop. Invariants of links and 3-manifolds that count graph configurations. EMS Press The Publishing House of the European Mathematical Society. EMS Press The Publishing House of the European Mathematical Society; arXiv, 12, 2024, EMS Monographs in Mathematics, 978-3-98547-582-7. ⟨10.4171/EMM/12⟩. ⟨hal-03758971⟩
23 Consultations
57 Téléchargements

Altmetric

Partager

More