Learning Feynman Diagrams with Tensor Trains - Archive ouverte HAL
Article Dans Une Revue Physical Review X Année : 2022

Learning Feynman Diagrams with Tensor Trains

Résumé

We use tensor network techniques to obtain high order perturbative diagrammatic expansions for the quantum many-body problem at very high precision. The approach is based on a tensor train parsimonious representation of the sum of all Feynman diagrams, obtained in a controlled and accurate way with the tensor cross interpolation algorithm. It yields the full time evolution of physical quantities in the presence of any arbitrary time dependent interaction. Our benchmarks on the Anderson quantum impurity problem, within the real time non-equilibrium Schwinger-Keldysh formalism, demonstrate that this technique supersedes diagrammatic Quantum Monte Carlo by orders of magnitude in precision and speed, with convergence rates $1/N^2$ or faster, where N is the number of function evaluations. The method also works in parameter regimes characterized by strongly oscillatory integrals in high dimension, which suffer from a catastrophic sign problem in Quantum Monte-Carlo. Finally, we also present two exploratory studies showing that the technique generalizes to more complex situations: a double quantum dot and a single impurity embedded in a two dimensional lattice.
Fichier principal
Vignette du fichier
PhysRevX.12.041018.pdf (1.7 Mo) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-03752036 , version 1 (25-05-2023)

Identifiants

Citer

Yuriel Nunez-Fernandez, Matthieu Jeannin, Philipp T. Dumitrescu, Thomas Kloss, Jason Kaye, et al.. Learning Feynman Diagrams with Tensor Trains. Physical Review X, 2022, 12 (4), pp.041018. ⟨10.1103/PhysRevX.12.041018⟩. ⟨hal-03752036⟩
90 Consultations
29 Téléchargements

Altmetric

Partager

More